Проводники, изоляторы и полупроводники

В электричестве выделяют три основных группы материалов – это проводники, полупроводники и диэлектрики. Основным их отличием является возможность проводить ток. В этой статье мы рассмотрим, чем отличаются эти виды материалов и как они ведут себя в электрическом поле.

Что такое проводник

Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.

  • G=1/R
  • Говоря простыми словами – проводник проводит ток.
  • Проводники, изоляторы и полупроводники

К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.

Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Проводники, изоляторы и полупроводники

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Что такое полупроводник

Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах.

Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой.

Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.

Проводники, изоляторы и полупроводники

Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.

Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.

Зонная теория

Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).

  1. Проводники, изоляторы и полупроводники
  2. На изображении ниже показаны три вида материалов с их энергетическими уровнями:
  3. Проводники, изоляторы и полупроводники

Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия.

В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться.

Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.

У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.

У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.

Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток.

Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники.

Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.

Напоследок рекомендуем просмотреть полезное видео по теме:

Наверняка вы не знаете:

Проводники и диэлектрики. Полупроводники

Сопротивление проводников. Проводимость. Диэлектрики. Применение проводников и изоляторов. Полупроводники.

Физические вещества многообразны по своим электрическим свойствам. Наиболее обширные классы вещества составляют проводники и диэлектрики.

Проводники

Проводники, изоляторы и полупроводники
Основная особенность проводников – наличие свободных носителей зарядов, которые участвуют в тепловом движении и могут перемещаться по всему объему вещества.
Как правило, к таким веществам относятся растворы солей, расплавы, вода (кроме дистиллированной), влажная почва, тело человека и, конечно же, металлы.

Металлы считаются наиболее хорошими проводниками электрического заряда.

Есть также очень хорошие проводники, которые не являются металлами. Среди таких проводников лучшим примером является углерод. Все проводники обладают такими свойствами, как сопротивление и проводимость. Ввиду того, что электрические заряды, сталкиваясь с атомами или ионами вещества, преодолевают некоторое сопротивление своему движению в электрическом поле, принято говорить, что проводники обладают электрическим сопротивлением (R).
Величина, обратная сопротивлению, называется проводимостью (G).

G = 1/ R

То есть, проводимость – это свойство или способность проводника проводить электрический ток.

Нужно понимать, что хорошие проводники представляют собой очень малое сопротивление потоку электрических зарядов и, соответственно, имеют высокую проводимость. Чем лучше проводник, тем больше его проводимость. Например, проводник из меди имеет большую проводимость, чем проводник из алюминия, а проводимость серебряного проводника выше, чем такого же проводника из меди.

Диэлектрики

Проводники, изоляторы и полупроводники
В отличие от проводников, в диэлектриках при низких температурах нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

К диэлектрикам относятся, в первую очередь, газы, которые проводят электрические заряды очень плохо. А также стекло, фарфор, керамика, резина, картон, сухая древесина, различные пластмассы и смолы.

Предметы, изготовленные из диэлектриков, называют изоляторами. Надо отметить, что диэлектрические свойства изоляторов во многом зависят от состояния окружающей среды. Так, в условиях повышенной влажности (вода является хорошим проводником) некоторые диэлектрики могут частично терять свои диэлектрические свойства.

О применении проводников и изоляторов

Проводники, изоляторы и полупроводники
Как проводники, так и изоляторы широко применяются в технике для решения различных технических задач.

К примеру, все электрические провода в доме выполнены из металла (чаще всего медь или алюминий). А оболочка этих проводов или вилка, которая включается в розетку, обязательно выполняются из различных полимеров, которые являются хорошими изоляторами и не пропускают электрические заряды.

Нужно отметить, что понятия «проводник» или «изолятор» не отражают качественных характеристик: характеристики этих материалов в действительности находятся в широком диапазоне – от очень хорошего до очень плохого.

Серебро, золото, платина являются очень хорошими проводниками, но это дорогие металлы, поэтому они используются только там, где цена менее важна по сравнению с функцией изделия (космос, оборонка). Медь и алюминий также являются хорошими проводниками и в то же время недорогими, что и предопределило их повсеместное применение. Вольфрам и молибден, напротив,  являются плохими проводниками и по этой причине не могут использоваться в электрических схемах (будут нарушать работу схемы), но высокое сопротивление этих металлов в сочетании с тугоплавкостью предопределило их применение в лампах накаливания и высокотемпературных нагревательных элементах.

Читайте также:  Простой логический пробник

Изоляторы также есть очень хорошие, просто хорошие  и плохие. Связано это с  тем, что в реальных диэлектриках также есть свободные электроны, хотя их очень мало.

Появление свободных зарядов даже в изоляторах обусловлено тепловыми колебаниями электронов: под воздействием высокой температуры некоторым электронам все-таки удается оторваться от ядра и изоляционные свойства диэлектрика при этом ухудшаются.

В некоторых диэлектриках свободных электронов больше и качество изоляции у них, соответственно, хуже. Достаточно сравнить, например, керамику и картон.

Самым лучшим изолятором является идеальный вакуум, но он практически не достижим на Земле. Абсолютно чистая вода также будет отличным изолятором, но кто-нибудь видел ее в реальности? А вода с наличием каких-либо примесей уже является достаточно хорошим проводником.

Критерием качества изолятора является соответствие его функциям, которые он должен выполнять в данной схеме. Если диэлектрические свойства материала таковы, что любая утечка через него ничтожно мала (не влияет на работу схемы), то такой материал считается хорошим изолятором.
 

Полупроводники

Проводники, изоляторы и полупроводники
Существуют вещества, которые по своей проводимости занимают промежуточное место между проводниками и диэлектриками.
Такие вещества называют полупроводниками. Они отличаются от проводников сильной зависимостью проводимости электрических зарядов от температуры, а также от концентрации примесей и могут иметь свойства, как проводников, так и диэлектриков.

В отличие от металлических проводников, у которых с ростом температуры проводимость уменьшается, у полупроводников проводимость растет  с увеличением температуры, а сопротивление, как величина обратная проводимости — уменьшается.

При низких температурах сопротивление полупроводников, как видно из  рис. 1, стремится к бесконечности.

Это значит, что при температуре абсолютного нуля полупроводник не имеет свободных носителей в зоне проводимости и в отличие от проводников ведёт себя, как диэлектрик. При увеличении температуры, а также при добавлении примесей (легировании) проводимость полупроводника растет и он приобретает свойства проводника. 
Проводники, изоляторы и полупроводники

Рис. 1. Зависимость сопротивлений проводников и полупроводников от температуры

Примерами классических полупроводников являются такие химические элементы, как кремний (Si) и германий (Ge). Более подробно об этих элементах читайте в статье «О проводимости полупроводников».

Что такое проводник и диэлектрик?

Проводники, изоляторы и полупроводники Все материалы, существующие в природе, различаются своими электрическими свойствами. Таким образом, из всего многообразия физических веществ в отдельные группы выделяются диэлектрические материалы и проводники электрического тока. 

  • Что представляют собой проводники?
  • Проводник – это такой материал, особенностью которого является наличие в составе свободно передвигающихся заряженных частиц, которые распространены по всему веществу. 
  • Проводящими электрический ток веществами являются расплавы металлов и сами металлы, недистиллированная вода, раствор солей, влажный грунт, человеческое тело.

Металл – это самый лучший проводник электрического тока. Также и среди неметаллов есть хорошие проводники, например, углерод. 

Все, существующие в природе проводники электрического тока, характеризуются двумя свойствами:

  • показатель сопротивления;
  • показатель электропроводности.

Сопротивление возникает из-за того, что электроны при движении испытывают столкновение с атомами и ионами, которые являются своеобразным препятствием. Именно поэтому проводникам присвоена характеристика электрического сопротивления. Обратной сопротивлению величиной является электропроводность. 

Электропроводность – это характеристика (способность) физического вещества проводить ток. Поэтому свойствами надежного проводника являются низкое сопротивление потоку движущихся электронов и, следовательно, высокая электропроводность. То есть, лучший проводник характеризуется большим показателем проводимости.  

Например кабельная продукция: медный кабель обладает большей электропроводностью по сравнению с алюминиевым.

Что представляют собой диэлектрики?

Диэлектрики – это такие физические вещества, в которых при заниженных температурах отсутствуют электрические заряды. В состав таких веществ входят лишь атомы нейтрального заряда и молекулы. Заряды нейтрального атома имеют тесную связь друг с другом, поэтому лишены возможности свободного перемещения по всему веществу. 

Самым лучшим диэлектриком является газ. Другие непроводящие электрический ток материалы – это стеклянные, фарфоровые, керамические изделия, а также резина, картон, сухое дерево, смолы и пластмассы. 

Диэлектрические предметы – это изоляторы, свойства которых главным образом зависимы от состояния окружающей атмосферы. Например, при высокой влажности некоторые диэлектрические материалы частично лишаются своих свойств. 

Проводники и диэлектрики широко используются в сфере электротехники для решения различных задач. 

Например, вся кабельно-проводниковая продукция изготавливается из металлов, как правило, из меди или алюминия. Оболочка проводов и кабелей полимерная, также, как и вилках всех электрических приборов. Полимеры – отличные диэлектрики, которые не допускают пропуска заряженных частиц. 

Серебряные, золотые и платиновые изделия – очень хорошие проводники. Но их отрицательная характеристика, которая ограничивает использование, состоит в очень высокой стоимости.

Поэтому применяются такие вещества в сферах, где качество гораздо важнее цены, которая за него уплачивается (оборонная промышленность и космос). 

Медные и алюминиевые изделия также являются хорошими проводниками, при этом имеют не столь высокую стоимость. Следовательно, использование медных и алюминиевых проводов распространено повсеместно. 

Вольфрамовые и молибденовые проводники имеют менее хорошие свойства, поэтому используются в основном в лампочках накаливания и нагревательных элементах высокой температуры. Плохая электропроводность может существенно нарушить работу электросхемы. 

Диэлектрики также различаются между собой своими характеристиками и свойствами. Например, в некоторых диэлектрических материалах также присутствуют свободные электрически заряды, пусть и в небольшом количестве.

Свободные заряды возникают из-за тепловых колебаний электронов, т.е. повышение температуры все-таки в некоторых случаях провоцирует отрыв электронов от ядра, что понижает изоляционные свойства материала.

Некоторые изоляторы отличаются большим числом «оторванных» электронов, что говорит о плохих изоляционных свойствах. 

Самый лучший диэлектрик – полный вакуум, которого очень трудно добиться на планете Земля. 

Полностью очищенная вода также имеет высокие диэлектрические свойства, но таковой даже не существует в реальности. При этом стоит помнить, что присутствие каких-либо примесей в жидкости наделяет ее свойствами проводника. 

Главный критерий качества любого диэлектрического материала – это степень соответствия возложенным на него функциям в конкретной электрической схеме. Например, если свойства диэлектрика таковы, что утечка тока совсем незначительная и не приносит никакого ущерба работе схемы, то диэлектрик является надежным. 

Что такое полупроводник?

Промежуточное место между диэлектриками и проводниками занимают полупроводники. Главное отличие проводников заключается в зависимости степени электропроводности от температуры и количества примесей в составе. При том материалу свойственны характеристики и диэлектрика, и проводника. 

С ростом температуры электропроводность полупроводников растет, а степень сопротивления при этом падает. При понижении температуры сопротивление стремится к бесконечности. То есть, при достижении нулевой температуры полупроводники начинают вести себя как изоляторы. 

Полупроводниками являются кремний и германий.

Статья по теме: Электрический ток и его скорость

ПОИСК

    Химия играет важную роль в решении энергетической проблемы (химические источники тока гальванические и топливные элементы, аккумуляторы), в создании соответствующих материалов для электротехнической промышленности и атомной энергетики (проводники и изоляторы полупроводники материалы и горючее для атомных реакторов и т. п.). [c.182]

    Изолятор, полупроводник Полупроводник, 2,7 Металл [c.202]

    В зависимости от структуры атомов и симметрии кристаллической решетки валентная зона и зона проводимости могут перекрывать рис. 75, б) пли не перекрывать друг друга (рис. 75, а). В последнем лучае между зонами имеется энергетический разрыв, именуемый запрещенной зоной.

В соответствии с характером расположения и заполнения зон вещества являются диэлектриками изоляторами), полупроводниками и проводниками (металлами). Ширина запрещенной зоны Af диэлектриков составляет более 3 эВ, полупроводников — от 0,1 до 3 эВ.

В металлических кристаллах вследствие перекрывания зон запрещенная зона отсутствует. [c.116]

    Изолятор Полупроводник Металл [c.634]

    Расположение зон (ближе или дальше друг от друга) и их заполненность электронами обусловливают свойства кристалла как диэлектрика (изолятора), полупроводника и проводника. При условии перекрывания валентной зоны и зоны проводимости вещество ведет себя как проводник.

Если зоны не перекрываются, достаточно далеко удалены друг от друга и валентная зона полностью заполнена электронами, вещество проявляет свойства диэлектрика. Энергетический разрыв между зоной проводимости и валентной зоной называется запрещенной зоной.

Количественно способность веществ проводить электрический ток оценивается по ширине запрещенной зоны Е. У диэлектриков ширина запрещенной зоны выше 3 эВ, у полупроводников от 3 до 0,1 эВ и у проводников (металлов) запрещенная зона отсутствует, АЕ=0 (рис. 4.15).

Читайте также:  Светодиодное оборудование

[c.182]

    Остановимся теперь на том, как зонная теория определяет различия между изоляторами, полупроводниками и металлами.

Будем считать структуру полос квазинепрерывной и введем функцию с (е) — энергетическую плотность состояний [с (е) с1е — число квантовых состояний в интервале значений энергии электрона от е до е + с1г].

Для электронов в кристалле эта функция имеет вид, схематически представленный на рис. 26, а. На рис. 26, б для сопоставления дана кривая [c.186]

    Система функций Фг(г) не полна. Поэтому для нахождения всех решений уравнения Шредингера нужно исходить из нескольких пробных функций, выбранных так, чтобы совокупность всех решений образовывала полную систему. В зависимости от того, будет ли при этом валентная зона отделена от зоны проводимости более или менее широким интервалом или перекрываться с ней, цепь будет изолятором, полупроводником или металлом. [c.127]

    Все сказанное позволяет следующим образом конкретизировать влияние носителя химическая природа носителя оказывает решающее влияние на адсорбционное равновесие между активными центрами и исходными веществами, но свойства самого АПС не зависят от носителя, будь то изолятор, полупроводник или проводник. [c.125]

    Схема расположения энергетических уровней в диэлектрике (изоляторе), полупроводнике и проводнике (металле) показана на рис. 1.

Косой штриховкой изображены заполненные уровни электронов, прочно связанные с решеткой твердого тела, а прямой — свободные уровни электронов, или уровни проводимости.

Электроны проводимости свободно передвигаются но всему кристаллу и служат переносчиками электрического тока. Металлы обладают наибольшим количеством электронов проводимости. [c.192]

    В соответствии с характером расположения и заполнения зон вещества могут быть диэлектриками изоляторами), полупроводниками и проводниками металлами). У диэлектриков ширина запрещенной зоны кЕ составляет более 3 эв, у полупроводников от 0,1 до 3 эв. В металлических кристаллах вследствие перекрывания валентной зоны и зоны проводимости запрещенная зона отсутствует. [c.134]

    Каждая из этих серий может быть разграничена по признаку полупроводимости окислов, а именно для первой реакции полупроводники /0-типа>изоляторы> полупроводники л-типа для второй реакции р-полупроводники>п-полупровод-ники>изоляторы. Кроме того, закономерности активностей этих окислов могут быть также поняты с точки зрения граничного электронного слоя при хемосорбции на них кислорода. [c.80]

    Одним из способов уменьшения экстракции является создание структуры типа металл—изолятор—полупроводник. Фишер предложил нанести на поверхность кристалла селенида цинка пленку фтористого цинка, который имеет очень широкую запрещенную зону 78].

Пленка была получена путем кипячения во фтористоводородной кислоте, насыщенной фтористым цинком. На пленку наносили металлический контакт с большой работой выхода чем выше была работа выхода, тем при меньших напряжениях можно было наблюдать свечение. [c.

47]

    Итак, полимерные тела, построенные на основе ковалентных связей, занимают среднее положение между ионными солями и металлами, причем переход от одного класса соединений к другому происходит постепенно по мере увеличения степени ионности или металлического характера связи. В табл. 6 приведены значения удельного сопротивления и ширины запрещенной зоны при комнатной температуре для изоляторов, полупроводников и проводников электричества, а также для взятых в качестве примера элементов IV группы периодической системы. [c.46]

    Изолятор. . . Полупроводник Проводник. . Алмаз. . . . Кремний. . . Германий. . . Олово (серое) Олово (белое) [c.47]

    Металлы, изоляторы, полупроводники. Зонная структура энергетического спектра электронов объясняется применением квантовой теории к твердому телу. Однако к зонной модели можно прийти и иным путем. [c.20]

    Дальнейший прогресс в физике твердого тела связан с развитием зонной теории твердых тел — изоляторов, полупроводников и металлов [165—177]. [c.203]

    Согласно выражению (1.49) при увеличении температуры ширина запрещенной зоны уменьшается из-за увеличения концентрации носителей тока. Это увеличение ведет к уменьшению искажения, что в свою очередь еще уменьшает запрещенную зону и т.д., пока запрещенная зона окончательно не захлопнется.

Выше некоторой критической температуры Тс А О)/К, значение которой зависит от АДО) и силы электрон-фононного взаимодействия К), искажение решетки полностью исчезает. Помимо наблюдаемых при Т = Тс кристаллографических изменений данное соединение будет проявлять фазовый переход изолятор (полупроводник) — металл (рис. 1.37).

[c.53]

    Для хорошего функционирования ИСПТ между проводниками к электроду сравнения и к полупроводниковой подложке должно быть приложено достаточно высокое входное напряжение Ус.

Это вызвано тем, что разность потенциалов между поверхностью и внутренней областью подложки должна быть достаточно велика для образования проводящего канала п-типа на границе раздела изолятор — полупроводник. Этот капал служит проводником между коллектором 1 и эмиттером 2 электронов, которые связаны с полупроводником посредством р—п-перехода.

При наложении напряжения между коллектором и эмиттером в коллекторе начинает протекать потребляемый ток /о. В определенных условиях потребляемый ток является [c.89]

    Жидкости и твердые тела по электропроводности могут быть разделены на следующие категории изоляторы, полупроводники, проводники с ионной проводимостью, металлические проводники, сверхпроводники. [c.134]

    В соответствии с характером расположения и заполнения зон вещества являются диэлектриками (изоляторами), полупроводниками и проводниками (металлами). Шащна запрещенной зоны АЕ диэлектриков составляет более 3 эв, полупроводников — от 0,1 эв до [c.149]

    Разумеется, все это не могло не отразиться на свойствах полученного кремния. Но стоило тщательно очистить его от посторонних примесей, помочь ему стать самим собой, II самый обыкновенный элемент Земли предстал перед учеными в совершенно новом качестве.

Он оказался полупроводником, веществом, электронная проводимость которого значительно меньше, чем у металлов, но больпге, чем у изоляторов. Полупроводники, и в иервую очередь кремниевые, широко применяются во многих отраслях современной техники, [c.

223]

    В работе Эйвена и Кузано [71] детально исследованы диоды на основе я-ZnSe с анодом из СигЗе. Селенид меди—полупроводник р-типа с узкой зоной, который незначительно растворяется в селениде цинка.

Диоды изготовляли нанесением селенида меди на поверхность кристалла селенида цинка путем погружения в раствор соли меди. Между селенидом меди и проводящим селенидом цинка был сделан изолирующий слой из селенида цинка.

Последний был получен либо термодиффузией меди в кристалл из слоя селенида меди, либо предварительным прогревом кристалла в парах селена перед осаждением слоя селенида меди. При этом образовывалась структура металл (или полупроводник с узкой запрещенной зоной)—изолятор — полупроводник (структура типа pin).

Диоды излучали при напряжении 1,4 в при прямом смещении. При температуре 77° К в спектре излучения наблюдались полосы 1,96 2,07 2,36 и 2,68 эв. Голубая полоса превалировала в кристаллах, [c.45]

    Сведения о полимерном строении цолучают, исследуя свойства растворов, 1Строение кристаллов, механические и физико-химические свойства неорганических полимеров. Структура нерастворимых полимеров, длина и углы связей, строение элементарной ячейки исследуются рентгенографическими и электронографическими методами.

Неорганические вещества могут быть изоляторами, полупроводниками и проводниками электричества. Изучение электропроводности дает ценные сведения о их строении.

Наблюдения за изменением теплоемкости и механических свойств полимеров в зависимости от температуры позволяют выяснить строение и свойства не только макромолекул, но иногда и надмолекулярных структур. [c.20]

    В силу гибкости и сравнительной простоты молекулярных методов, а также применимости их к широкому классу систем, предлагаемый подход в рамках модели КРЭЯ может быть ис-полБЗован для исследования ЛЦ в различных кристаллах-изоляторах, полупроводниках и даже металлах (если используются молекулярные методы, разработанные для систем с открытыми оболочками). [c.267]

    В изоляторе 02 или 31зН4), отделяющем мембрану от полупроводниковой подложки (обычно это проводник р-типа), возникает электрическое поле, способное увеличивать или уменьшать плотность подвижных носителей заряда (дырок) в поверхностном слое полупроводника.

Когда дырки отталкиваются от границы раздела изолятор — полупроводник обратно в полупроводник, в полупроводнике возникает зона поверхностного заряда. Если разность электрических потенциалов внутри и на поверхности полупроводника достаточно велика, то на поверхности образуется избыток подвижных электронов, или, другими словами, проводящий канал п-типа.

Этот канал отделен от внутренней области проводника зоной поверхностного заряда. [c.89]

ПРОВОДНИКИ, ИЗОЛЯТОРЫ, ПОЛУПРОВОДНИКИ

Все вещества (тела) состоят из атомов имолекул. Атом имеет положительно заряженное ядро и отрицательно заря­женные электроны, совершающие орбитальные движения

Читайте также:  Промежуточные реле: назначение, где применяются и как их выбирают

вокруг ядра. Если суммарный отрицательный заряд электронов равен положительному заряду, то атом электрически нейтрален.

Порядковый номер элемента в периодической таблице Менделеева определяется числом электронов нейт­рального атома. Электрический заряд электрона (элемен­тарный заряд) равен —1,6 ·10-19 Кл.

Заряд ядра по абсо­лютному значению равен заряду электрона, умноженному на число электронов нейтрального атома.

Электроны атомов обычно находятся на определеных орбитах. Электроны, находящиеся на внутренних орбитах, относительно прочно связаны с ядром атома.

Электроны, находящиеся на внешних орбитах (валентные электроны), сравнительно легко могут отделяться от атома, после чего становятся «свободными» или соединяются к другому атому или молекуле. Атом, потерявший один или несколько электронов, называется положительным ионом, а атом, при­соединивший электроны, — отрицательным ионом.

Процесс образования ионов называется ионизацией. Количество но­сителей заряда — свободных электронов или ионов — в еди­нице объема вещества принято называть концентрацией но­сителей заряда.

Электрический ток проводимости — это явле­ние упорядоченного (направленного) движения заряжен­ных частиц. Свойство вещества проводить электрический ток под действием электрического поля называется элек­тропроводностью.

Электропроводность вещества за­висит от концентрации носителей заряда: чем выше кон­центрация, тем больше электропроводность.

Все вещества в зависимости от электропроводности делятся на провод­ники, диэлектрики и полупроводники.

Основным свойством проводящих веществ (материа­лов), или проводников, является их высокая электро­проводность. Проводники делятся на два рода.

В провод­никах первого рода, к которым преимущественно относятся все металлы и их сплавы, электрический ток создается пе­ремещением только электронов — это проводники с элект­ронной проводимостью.

Прохождение тока в них не сопро­вождается химическими изменениями материала проводни­ка. Лучшими проводниками являются серебро, медь, алюминий.

Согласно классической электронной теории высокая электропроводность металлов объясняется наличием в них огромного количества свободных электронов — электронов проводимости, находящихся в состоянии беспорядочного

движения и заполняющих объем проводника наподобие га­за— электронного газа. При движении электроны сталки­ваются с ионами неподвижной кристаллической решетки, состоящей из атомов вещества; направление их дви­жения, скорость, кинетическая энергия при этом изменя­ются.

Если в таком проводнике существует электрическое по­ле, то на заряды проводника действуют силы этого поля.

Направление сил, действующих на положительные заряды, совпадает с направлением поля, а действующих на отрица­тельные заряды, — противоположно направлению поля.

В результате наступает упорядоченное движение свобод­ных электронов в одном направлении, т. е, в проводнике возникает ток (проводимости).

Проводники второго рода, или проводники с ионной про­водимостью, представляют собой расплавы некоторых со­лей и водные растворы кислот, солей, щелочей и др. В расплавах и растворах независимо от прохождения тока про­исходит распад их нейтральных молекул на положительные и отрицательные ионы (электролитическая диссоциация).

Положительными ионами являются ионы металлов и водо­род, отрицательными — кислотные остатки и гидроксильная группа (ОН). Расплавы и растворы веществ, состоя­щие частично или полностью из ионов, называются еще электролитами. При отсутствии внешнего электрического поля ионы и молекулы находятся в состоянии хаотического движения.

Если в таком проводнике создать электрическое поле, то силы поля вызовут движение положительных ионов в на­правлении поля, а отрицательных — в противоположном направлении. Их упорядоченное движение и представляет собой ток (проводимости) в электролите.

Диэлектриками (изоляторами) называются вещества (материалы), в которых при нормальных услови­ях (невысокие температуры и отсутствие сильных электри­ческих полей) имеется ничтожное количество свободных электрически заряженных частиц; вследствие этого они обладают ничтожной электропроводностью, которой во многих случаях можно пренебречь.

К числу изоляторов от­носятся некоторые газы и жидкости — минеральные масла, лаки, а также большое число твердых материалов, за ис­ключением металлов, их сплавов и угля.

Однако при неко­торых условиях, например при действии высоких темпера­тур или сильных электрических полей, в диэлектриках возможны расщепление молекул на ионы и потеря ими изолирующих свойств.

Полупроводники (полупроводящие вещества или материалы) по своей электропроводности занимают проме­жуточное место между проводниками и изоляторами. К по­лупроводникам относятся кремний, германий, теллур, селен, окислы металлов, соединения металлов с серой и т. д.

Полупроводники обладают рядом характерных свойств, электропроводность их и концентрация свободных носите­лей заряда в сильной степени зависят от температуры, осве­щенности, электрических полей, примесей и др.

Отличительные особенности полупроводников объясняются тем, что кроме электронной электропроводности, вызываемой электронами проводимости, они обладают еще так называе­мой дырочной электропроводностью. Последняя вызва­на перемещением под действием электрического поля «дырок», т. е.

не занятых валентными электронами мест в атомах (из-за перемещения от атома к атому валентных электронов), что равноценно перемещению положительно заряженных частиц, заряды которых по абсолютному зна­чению равны зарядам электронов.

В настоящее время свойства полупроводников использу­ются в большом количестве весьма разнообразных прибо­ров и устройств (полупроводниковые диоды и триоды, фо­торезисторы и т. п.).

Вот, имеются зоны энергии, есть последняя заполненная зона, она называется валентной зоной. Мы видели, что электроны, сидящие в заполненных зонах, вклада в проводимость не дают. Дальше вариант такой: за валентной зоной идёт пустая зона при T = 0, тело с такой структурой это изолятор.

При нагревании, если запрещённая зона не слишком велика, происходит тепловое возбуждение, и часть электронов из валентной зоны может перейти в следующую зону, зону проводимости, тогда интеграл будет отличен от нуля, и появится ток, это полупроводники.

Полупроводники – это твёрдое тело, для которого ширина запрещённой зоны не слишком велика, так что при комнатных температурах число электронов, которые перейдут в зону проводимости, будет ощутимо. При понижении температуры сопротивление будет расти и при абсолютном нуле температуры полупроводник становится изолятором.

Если эта запрещённая зона достаточно велика (больше некоторого условного уровня), то соответствующий металл называется изолятором. При тепловом возбуждении всё равно часть электронов переходит в зону проводимости, но их мало и заметного вклада в проводимость они не дают.

То есть с этой точки зрения изолятор это плохой полупроводник или полупроводник это плохой изолятор, качественного различия нет.

А есть, наконец, твёрдые тела, для которых нет этой запрещённой зоны, т.е.

либо зона проводимости пересекается с валентной зоной, либо мы просто имеем частично заполненную зону, а следующая свободна, эти тела называются проводники и это металлы.

Проводник и металл в этом контексте синонимы. В проводниках можно считать, что электроны в этой частично заполненной зоне ведут себя как идеальный фермионный газ.

Ну вот, всё. Остальное придётся прочитать в книжке, но повторяю, там идейных проблем нет, там только детали.

1) Отполируем поверхность, она будет меньше поглощать, скажем, полированный стол больше отражает, чем какая-то неполированная деревяшка.

2) Вот у вас кусок железа излучает при данной температуре, отполируйте его поверхность, его излучение изменится!

1) Если вы откроете дверцу только что протопленной печки, то увидите излучение чёрного тела.

Космическое пространство всё в масштабах Вселенной заполнено равновесным электромагнитным излучением с температурой 30K, то есть с таким, с каким было бы излучение в полости с температурой стенок 30K, это так называемое реликтовое излучение, оставшееся со времён возникновения Вселенной.

Если расширение будет продолжаться, температура будет падать и дальше, в конце концов до абсолютного нуля, если расширение сменится сжатием, температура будет возрастать, и весё вернётся к начальному состоянию с большими температурами.

2) Классическая физика не смогла получить разумную формулу для спектральной плотности (эта формула легко проверяется: абсолютно чёрное тело – печь, ставят спектрометр, излучение в спектр разворачивается, и для каждой полоски спектра можно найти энергию в этом интервале длин волн).

Классическая физика не смогла не только дать правильное значение функции, она не смогла дать даже разумное значение, а именно, получалось, что эта функция растёт с убыванием длины волны, а это просто бессмысленно, это означает, что любое тело в видимой области излучает, а в низких частотах ещё больше, и полная энергия излучения стремится к бесконечности.

Значит, в классической физике есть какие-то принципиальные дефекты.

Перейти на страницу: 1 2 3 4 5 6

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock
detector