Принцип работы и основы программирования плк

С чего начиналась промышленная автоматика? А начиналось все с контактно-релейных схем управления промышленными процессами. Кроме жуткого «шелестения», контактно релейные схемы имели фиксированную логику работы, и в случае изменения алгоритма, необходимо основательно переделать монтажную схему

Бурное развитие микропроцессорной техники, привели к созданию систем управления технологическими процессами на базе промышленных контроллеров. Но это не означает, что реле изжили себя, у них просто своя ниша для применения.

ПЛК – программируемый логический контроллер, представляют собой микропроцессорное устройство, предназначенное для сбора, преобразования, обработки, хранения информации и выработки команд управления, имеющий конечное количество входов и выходов, подключенных к ним датчиков, ключей, исполнительных механизмов к объекту управления, и предназначенный для работы в режимах реального времени.

Принцип работы и основы программирования ПЛК

Принцип работы ПЛК несколько отличается от «обычных» микропроцессорных устройств. Программное обеспечение универсальных контроллеров состоит из двух частей. Первая часть это системное программное обеспечение.

Проводя аналогию с компьютером можно сказать, что это операционная система, т.е. управляет работой узлов контроллера, взаимосвязи составляющих частей, внутренней диагностикой.

Системное программное обеспечение ПЛК расположено в постоянной памяти центрального процессора и всегда готово к работе. По включению питания, ПЛК готов взять на себя управление системой уже через несколько миллисекунд.

ПЛК работают циклически по методу периодического опроса входных данных.
Рабочий цикл ПЛК включает 4 фазы:
1. Опрос входов
2. Выполнение пользовательской программы
3. Установку значений выходов

4. Некоторые вспомогательные операции (диагностика, подготовка данных для отладчика, визуализации и т. д.).

Выполнение 1 фазы обеспечивается системным программным обеспечением.

После чего управление передается прикладной программе, той программе, которую вы сами записали в память, по этой программе контроллер делает то что вы пожелаете, а по ее завершению управление опять передается системному уровню.

За счет этого обеспечивается максимальная простота построения прикладной программы – ее создатель не должен знать, как производится управление аппаратными ресурсами. Необходимо знать с какого входа приходит сигнал и как на него реагировать на выходах

Очевидно, что время реакции на событие будет зависеть от времени выполнения одного цикла прикладной программы. Определение времени реакции – времени от момента события до момента выдачи соответствующего управляющего сигнала – поясняется на рисунке:

Принцип работы и основы программирования ПЛК

Обладая памятью, ПЛК в зависимости от предыстории событий, способен реагировать по-разному на текущие события. Возможности перепрограммирования, управления по времени, развитые вычислительные способности, включая цифровую обработку сигналов, поднимают ПЛК на более высокий уровень в отличие от простых комбинационных автоматов.

Рассмотрим входа и выхода ПЛК. Существует три вида входов дискретные, аналоговые и специальные
Один дискретный вход ПЛК способен принимать один бинарный электрический сигнал, описываемый двумя состояниями – включен или выключен.

Все дискретные входы (общего исполнения) контроллеров обычно рассчитаны на прием стандартных сигналов с уровнем 24 В постоянного тока. Типовое значение тока одного дискретного входа (при входном напряжении 24 В) составляет около 10 мА.

Аналоговый электрический сигнал отражает уровень напряжения или тока, соответствующий некоторой физической величине, в каждый момент времени. Это может быть температура, давление, вес, положение, скорость, частота и т. д.

Поскольку ПЛК является цифровой вычислительной машиной, аналоговые входные сигналы обязательно подвергаются аналого-цифровому преобразованию (АЦП). В результате, образуется дискретная переменная определенной разрядности.

Как правило, в ПЛК применяются 8 — 12 разрядные преобразователи, что в большинстве случаев, исходя из современных требований по точности управления технологическими процессами, является достаточным.

Кроме этого АЦП более высокой разрядности не оправдывают себя, в первую очередь из-за высокого уровня индустриальных помех, характерных для условий работы контроллеров.

Практически все модули аналогового ввода являются многоканальными. Входной коммутатор подключает вход АЦП к необходимому входу модуля.

Стандартные дискретные и аналоговые входы ПЛК способны удовлетворить большинство потребностей систем промышленной автоматики. Необходимость применения специализированных входов возникает в случаях, когда непосредственная обработка некоторого сигнала программно затруднена, например, требует много времени.

Наиболее часто ПЛК оснащаются специализированными счетными входами для измерения длительности, фиксации фронтов и подсчета импульсов.

Например, при измерении положения и скорости вращения вала очень распространены устройства, формирующие определенное количество импульсов за один оборот – поворотные шифраторы. Частота следования импульсов может достигать нескольких мегагерц.

Даже если процессор ПЛК обладает достаточным быстродействием, непосредственный подсчет импульсов в пользовательской программе будет весьма расточительным по времени. Здесь желательно иметь специализированный аппаратный входной блок, способный провести первичную обработку и сформировать, необходимые для прикладной задачи величины.

Вторым распространенным типом специализированных входов являются входы способные очень быстро запускать заданные пользовательские задачи с прерыванием выполнения основной программы – входы прерываний.

Дискретный выход также имеет два состояния – включен и выключен. Они нужны для управления: электромагнитных клапанов, катушек, пускателей, световые сигнализаторы и т.д. В общем сфера их применения огромна, и охватывает почти всю промышленную автоматику.

Конструктивно ПЛК подразделяются на моноблочные, модульные и распределенные. Моноблочные имеют фиксированный набор входов выходов

Принцип работы и основы программирования ПЛК

В модульных контроллерах модули входов – выходов устанавливаются в разном составе и количестве в зависимости от предстоящей задачи

Принцип работы и основы программирования ПЛК

В распределенных системах модули или даже отдельные входа-выхода, образующие единую систему управления, могут быть разнесены на значительные расстояния

Языки программирования ПЛК

При создании системы управления технологического процесса, всегда существует проблема по взаимопониманию программиста и технологов. Технолог скажет «нам надо немного подсыпать, чуть подмешать, еще подсыпать и чуть нагреть». И мало когда следует ждать от технолога формализованного описания алгоритма.

И получалось так, что программисту нужно долго вникать в тех. Процесс, потом писать программу. Зачастую при таком подходе программист остается единственным человеком, способным разобраться в своем творении, со всеми вытекающими отсюда последствиями.

Такая ситуация породила стремлении создание технологических языков программирования, доступные инженерам и технологам и максимально упрощающим процесс программирования

За последнее десятилетие появилось несколько технологических языков.

Более того, Международной Электротехнической Комиссией разработан стандарт МЭК-61131-3, концентрирующий все передовое в области языков программирования для систем автоматизации технологических процессов.

Этот стандарт требует от различных изготовителей ПЛК предлагать команды, являющиеся одинаковыми и по внешнему виду, и по действию.

Стандарт специфицирует 5 языков программирования:

  • Sequential Function Chart (SFC) – язык последовательных функциональных блоков;
  • Function Block Diagram (FBD) – язык функциональных блоковых диаграмм;
  • Ladder Diagrams (LАD) – язык релейных диаграмм;
  • Statement List (STL) – язык структурированного текста, язык высокого уровня. Напоминает собой Паскаль
  • Instruction List (IL) – язык инструкций., это типичный ассемблер с аккумулятором и переходам по метке.

Язык LAD или KOP (с немецкого Kontaktplan) похожи на электрические схемы релейной логики. Поэтому инженерам не знающим мудреных языков программирования, не составит труда написать программу. Язык FBD напоминает создание схем на логических элементах. В каждом из этих языков есть свои минусы и плюсы.

Поэтому при выборе специалисты основываются в основном на личном опыте. Хотя большинство программных комплексов дают возможность переконвертировать уже написанную программу из одного языку в другой.

Так как некоторые задачи изящно и просто решаются на одном языке, а на другом придется столкнуться с некоторыми трудностями

Наибольшее распространение в настоящее время получили языки LAD, STL и FBD.

Большинство фирм изготовители ПЛК традиционно имеют собственные фирменные наработки в области инструментального программного обеспечения. Например такие как «Concept» Schneider Electric, «Step 7» Siemens.

Программный комплекс CoDeSys

Открытость МЭК стандартов привели к созданию фирм занимающихся исключительно инструментами программирования ПЛК.

Наибольшей популярностью в мире пользуются комплекс CoDeSys. CoDeSys разработан фирмой 3S. Это универсальный инструмент программирования контроллеров на языках МЭК, не привязанной к какой-либо аппаратной платформе и удовлетворяющим всем современным требованиям.

Основные особенности:
— полноценная реализация МЭК языков
— встроенный эмулятор контроллера позволяет проводить отладку проекта без аппаратных средств.

Причем эмулируется не некий абстрактный контроллер, а конкретный ПЛК с учетом аппаратной платформы
— встроенные элементы визуализации дают возможность создать модель объекта управления и проводить отладку, т.е.

дает возможность создавать человеко-машинного интерфейса (HMI)
— очень широкий набор сервисных функции, ускоряющий работу программиста

— существует русская версия программы, и русская документация

Литература:
Современные технологии промышленной автоматизации: учебник / О. В. Шишов. Саранск : Изд-во Мордов. ун-та, 2007. – 273 с. ISBN 5-7103-1123-5

Программируемый логический контроллер

В этой статье не хватает ссылок на источники информации.Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.Эта отметка установлена 6 февраля 2019 года.

Модульный программируемый логический контроллер

Программи́руемый логи́ческий контро́ллер (сокр. ПЛК; англ. programmable logic controller, сокр. PLC; более точный перевод на русский — контроллер с программируемой логикой), программируемый контроллер — специальная разновидность электронной вычислительной машины. Чаще всего ПЛК используют для автоматизации технологических процессов. В качестве основного режима работы ПЛК выступает его длительное автономное использование, зачастую в неблагоприятных условиях окружающей среды, без серьёзного обслуживания и практически без вмешательства человека.

Читайте также:  Способ подключения водонагревателя и насоса при недостаточной мощности сети

  • Иногда на ПЛК строятся системы числового программного управления станков.
  • ПЛК — устройства, предназначенные для работы в системах реального времени.
  • ПЛК имеют ряд особенностей, отличающих их от прочих электронных приборов, применяемых в промышленности:
  • в отличие от микроконтроллера (однокристального компьютера) — микросхемы, предназначенной для управления электронными устройствами — ПЛК являются самостоятельным устройством, а не отдельной микросхемой.
  • в отличие от компьютеров, ориентированных на принятие решений и управление оператором, ПЛК ориентированы на работу с машинами через развитый ввод сигналов датчиков и вывод сигналов на исполнительные механизмы;
  • в отличие от встраиваемых систем ПЛК изготавливаются как самостоятельные изделия, отдельные от управляемого при его помощи оборудования.

В системах управления технологическими объектами логические команды, как правило, преобладают над арифметическими операциями над числами с плавающей точкой, что позволяет при сравнительной простоте микроконтроллера (шины шириной 8 или 16 разрядов), получить мощные системы, действующие в режиме реального времени. В современных ПЛК числовые операции в языках их программирования реализуются наравне с логическими. Все языки программирования ПЛК имеют лёгкий доступ к манипулированию битами в машинных словах, в отличие от большинства высокоуровневых языков программирования современных компьютеров.

История

Первые логические контроллеры появились в виде шкафов с набором соединённых между собой реле и контактов. Эта схема не могла быть изменена после этапа проектирования и поэтому получила название — жёсткая логика. Первым в мире, программируемым логическим контроллером, в 1968 году стал Modicon 084 (1968) (от англ. modular digital controller), имевший 4 кБ памяти.

Термин PLC ввел Одо Жозеф Стругер (англ.)русск. (Allen-Bradley) в 1971 году. Он также сыграл ключевую роль в унификации языков программирования ПЛК и принятии стандарта IEC61131-3. Вместе с Ричардом Морли (англ.)русск. (Modicon) их называют 'отцами ПЛК’. Параллельно с термином ПЛК в 1970-е годы широко использовался термин микропроцессорный командоаппарат.

В первых ПЛК, пришедших на замену релейным логическим контроллерам, логика работы программировалась схемой соединений LD. Устройство имело тот же принцип работы, но реле и контакты (кроме входных и выходных) были виртуальными, то есть существовали в виде программы, выполняемой микроконтроллером ПЛК. Современные ПЛК являются свободно программируемыми.

Виды ПЛК

  • Основные ПЛК,
  • Программируемое (интеллектуальные) реле,
  • Программные ПЛК на базе IBM PC-совместимых компьютеров (англ. SoftPLC),
  • ПЛК на базе простейших микропроцессоров (i8088/8086/8051 и т. п.),
  • Контроллер ЭСУД (Электронная система управления двигателем).

Контроллер на базе персонального компьютера

Именно это направление существенно развивается в последнее время, и это обусловлено определенными причинами. Таковыми причинами являются:

  • Повышение надежности ПК.
  • Наличие разных модификаций ПК в обычном и промышленном исполнении.
  • Использование открытой архитектуры.
  • Возможность подключения любых модулей УСО, которые выпускаются другими компаниями.
  • Возможность использования широкой номенклатуры наработанного программного обеспечения.

Эти контроллеры используются для управления небольшими замкнутыми объектами в промышленности, в специализированных системах автоматизации в медицине и др. направлениях.

Контроллер выполняет функции, которые предусматривают сложную обработку измерительной информации с расчетом нескольких управляющих воздействий, при этом общее число входов/выходов не превышает нескольких десятков. Основными достоинствами этих контроллеров является большой объем вычислений за достаточно малый отрезок времени.

Схожесть с условиями работы офисных ПК, возможность программирования на языке высокого уровня. Аппаратная поддержка обеспечивается обычными контроллерами, обладающего функциями глубокой диагностикой и устранением неисправностей без остановки работы контроллера.[1]

Локальный программируемый контроллер

ЛПК подлежит следующей классификации:

  • Встраиваемый в оборудование и являющийся его неотъемлемой частью
  • Автономный реализующий функции контроля и управления
В этом разделе не хватает ссылок на источники информации.Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.Эта отметка установлена 13 ноября 2019 года.

Эти контроллеры имеют среднюю вычислительную способность, т.е. мощность. Она представляет собой комплексную характеристику, зависит от частоты и разрядности компьютера и объема оперативной памяти. Для реализации передачи информации с другими системами автоматизации локальные контроллеры имеют несколько физических портов.

В этих контроллерах реализуются типовые функции обработки измерительной информации, блокировок, регулирования и программно-логического управления. В системах противоаварийной защиты используется специальный тип локальных контроллеров, так как они отличаются высокой надежностью, живучестью и быстродействием.

Также предусматривают полную диагностику неисправностей с локализацией их и резервирования компонентов и устройства в целом.

Устройство ПЛК

Часто ПЛК состоит из следующих частей:

  • центральная микросхема (микроконтроллер, или микросхема FPGA), с необходимой обвязкой;
  • подсистема часов реального времени;
  • энергонезависимая память;
  • интерфейсы последовательного ввода-вывода (RS-485, RS-232, Ethernet)
  • схемы защиты и преобразования напряжений на входах и выходах ПЛК.

Обычно вход или выход ПЛК нельзя сразу же подключить к соответствующему выходу центральной микросхемы. Эти выходы характеризуются низкими уровнями напряжений, обычно от 3,3 до 5 вольт.

Входы и выходы ПЛК обычно должны работать с напряжениями 24 В постоянного либо 220 В переменного тока.

Поэтому между выходом ПЛК и выходом микросхемы необходимо предусматривать усилительные и защитные элементы.

Структуры систем управления

Прямоуголный разъём DeviceNet на интерфейсном модуле SST 5136-DNS-200, осуществляющем функцию шлюза для SIEMENS SIMATIC S7 (ET 200S).

  • Централизованная: в корзину ПЛК, зачастую в объединительную панель, устанавливаются модули процессора(ов), ввода-вывода и связи. В случае необходимости расширения системы сверх ограничения существующей корзины, в неё ставят модули расширения, добавляющие возможность масштабирования в пределах одного шкафа. Датчики и исполнительные устройства подключаются отдельными проводами непосредственно к модулям ввода-вывода, при помощи модулей согласования к входам/выходам сигнальных модулей либо (в случае организации в устройстве интерфейса с шиной) через модуль связи (мост); в случае использования полевой шины типа AS-i возможно питание исполнительного механизма по шине с одновременной передачей сигналов управления.
  • Распределенная: удалённые от шкафа с ПЛК датчики и исполнительные устройства связаны с ПЛК посредством каналов связи (через модули или процессоры связи) и, возможно, корзин-расширителей с использованием связей типа «ведущий-ведомый» (англ. Master-Slave).

Интерфейсы ПЛК

См. также: Промышленная сеть

  • RS-232
  • RS-485
  • Modbus
  • CC-Link
  • Profibus
  • DeviceNet
  • ControlNet
  • CAN
  • AS-Interface
  • Industrial Ethernet

Удаленное управление и мониторинг

  • SCADA
  • операторские панели
  • Веб-интерфейс

Языки программирования ПЛК

Для программирования ПЛК используются стандартизированные языки МЭК (IEC) стандарта IEC61131-3

Языки программирования (графические)

  • LD (Ladder Diagram) — Язык релейных схем — самый распространённый язык для PLC
  • FBD (Function Block Diagram) — Язык функциональных блоков — 2-й по распространённости язык для PLC
  • SFC (Sequential Function Chart) — Язык диаграмм состояний — используется для программирования автоматов
  • CFC (Continuous Function Chart) — Не сертифицирован IEC61131-3, дальнейшее развитие FBD

Языки программирования (текстовые)

  • IL (Instruction List) — Ассемблеро-подобный язык
  • ST (Structured Text) — Паскале-подобный язык
  • C-YART — Си-подобный язык (YART Studio)

Структурно в IEC61131-3 среда исполнения представляет собой набор ресурсов (в большинстве случаев это и есть ПЛК, хотя некоторые мощные компьютеры под управлением многозадачных ОС предоставляют возможность запустить несколько программ типа softPLC и имитировать на одном ЦП несколько ресурсов). Ресурс предоставляет возможность исполнять задачи. Задачи представляют собой набор программ. Задачи могут вызываться циклически, по событию, с максимальной частотой.

Программа — это один из типов программных модулей POU. Модули (POU) могут быть типа программа, функциональный блок и функция.
В некоторых случаях для программирования ПЛК используются нестандартные языки, например:
Блок-схемы алгоритмов
С-ориентированная среда разработки программ для ПЛК.
HiGraph 7 — язык управления на основе графа состояний системы.

Инструменты программирования ПЛК на языках МЭК 61131-3 могут быть специализированными для отдельного семейства ПЛК или универсальными, работающими с несколькими (но далеко не всеми) типами контроллеров:

  • CoDeSys
  • ISaGRAF
  • ИСР «КРУГОЛ»
  • Beremiz
  • KLogic

Программирование ПЛК

  • Конфигурируемые: В ПЛК хранится несколько программ, а через клавиатуру ПЛК выбирается нужная версия программы;
  • Свободно программируемые: программа загружается в ПЛК через его специальный интерфейс с Персонального компьютера используя специальное ПО производителя, иногда с помощью программатора.

Программирование ПЛК имеет отличие от традиционного программирования. Это связано с тем, что ПЛК исполняют бесконечную последовательность программных циклов, в каждом из которых:

  • считывание входных сигналов, в том числе манипуляций, например, на клавиатуре оператором;
  • вычисления выходных сигналов и проверка логических условий;
  • выдача управляющих сигналов и при необходимости управление индикаторами интерфейса оператора.

Поэтому при программировании ПЛК используются флаги — булевые переменные признаков прохождения алгоритмом программы тех или иных ветвей условных переходов. Отсюда, при программировании ПЛК от программиста требуется определённый навык.

Например, процедуры начальной инициализации системы после сброса или включения питания. Эти процедуры нужно исполнять только однократно. Поэтому вводят булевую переменную (флаг) завершения инициализации, устанавливаемую при завершении инициализации. Программа анализирует этот флаг, и если он установлен, то обходит исполнение кода процедур инициализации.

Читайте также:  Как сделать так, чтобы стиральная машина не билась током

См. также

  • Микроконтроллер
  • Промышленный контроллер
  • Промышленная автоматика
  • Контроллер

Литература

  • Мишель Ж. Программируемые контроллеры: архитектура и применение. — М.: Машиностроение, 1986
  • Э. Парр. Программируемые контроллеры: руководство для инженера. — М.: БИНОМ. Лаборатория знаний, 2007. — 516 с. ISBN 978-5-94774-340-1
  • Петров И. В. Программируемые контроллеры. Стандартные языки и приемы прикладного проектирования / Под ред. проф. В. П. Дьяконова. — М.: СОЛОН-Пресс, 2004. — 256 c. ISBN 5-98003-079-4
  • Денисенко В. В. Компьютерное управление технологическим процессом, экспериментом, оборудованием. — М: Горячая Линия-Телеком, 2009. — 608 с. ISBN 978-5-9912-0060-8
  • Минаев И. Г. Программируемые логические контроллеры. Практическое руководство для начинающего инженера. /И. Г. Минаев, В. В. Самойленко — Ставрополь: АГРУС, 2009. — 100 с. ISBN 978-5-9596-0609-1
  • Минаев И. Г. Программируемые логические контроллеры в автоматизированных системах управления / И. Г. Минаев, В. М. Шарапов, В. В. Самойленко, Д. Г. Ушкур. 2-е изд., перераб. и доп. — Ставрополь: АГРУС, 2010. — 128 с. ISBN 978-5-9596-0670-1
  • О. А. Андрюшенко, В. А. Водичев. Электронные программируемые реле серий EASY и MFD-Titan. — 2-е изд., испр. — Одесса: Одесский национальный политехнический университет, 2006. — С. 223.
  • Минаев И.Г. Свободно программируемые устройства в автоматизированных системах управления / И.Г. Минаев, В.В. Самойленко, Д.Г. Ушкур, И.В. Федоренко — Ставрополь: АГРУС. 2016. — 168 с. ISBN 978-5-9596-1222-1

Примечания

  1. ↑ Елизаров И.А., Мартемьянов Ю.Ф., Схиртладзе А.Г., Фролов С.В. Технические средства автоматизации. Программно-технические комплексы и контроллеры: Учебное пособие. М.: «Издательство Машиностроение-1», 2004, — с.7-8 — 180 с.

Ссылки

Что такое программируемый логический контроллер и принцип его работы

Задачей такого логического контроллера является сбор данных, их обработка и преобразование, сохранение в памяти необходимой информации, создание команд управления, которые поступают посредством входов и передаются посредством выходов. Входы и выходы подключаются к датчикам и ключам, к механизмам устройства управления.

Логические контроллеры осуществляют свою работу практически без участия оператора, что позволяет работать в режиме реального времени в жестких условиях эксплуатации, даже при наличии неблагоприятных условий окружающей среды.

На заре развития промышленной автоматики логические контроллеры были созданы по типу релейных схем с фиксированной логикой работы. При нарушении алгоритма приходилось основательно изменять действующую схему.

С внедрением и быстрым распространением микропроцессоров автоматика производственного процесса стала строиться на основе микропроцессоров. Однако роль логических контроллеров не перестала оставаться актуальной, они просто заняли свою отдельную нишу применения.

Сегодня релейные схемы оснащаются программным обеспечением, что превращает программируемые логические контроллеры в микропроцессорное устройство, обеспечивающее сбор информации, ее переработку, сохранение и передачу команд к узлам выполняющего устройства.

При этом ЛПК контроллер по принципу своей работы существенно отличается от микропроцессорных устройств, поскольку программное обеспечение ЛПК контроллера имеет две части, первой из которых является системное программное обеспечение. Оно функционирует по аналогии с компьютерной операционной системой и обеспечивает:

  • управление внутренними узлами контроллера;
  • взаимодействие составляющих компонентов;
  • осуществление внутренней диагностики.

Системное обеспечение заключено в постоянную память процессора и вступает в работу через несколько миллисекунд после подключения ПЛК к сети.

ПЛК контроллер работает циклично, при этом каждый цикл сопровождается чтением данных и имеет 4 фазы:

  • первая представляет собой опрос входов;
  • на второй фазе осуществляется выполнение действий, установленных пользовательской программой;
  • третья фаза устанавливает значения входов;
  • на четвертой фазе производятся дополнительные операции, например, производится диагностика, подготавливаются данные для отладчика, визуализация.

Системное ПО осуществляет работу первой фазы. После опроса входов управление передается программе, находящейся в памяти.

Это программа, созданная пользователем для решения определенных задач, содержит те действия, которые должны совершаться, после их выполнения управление передается на системный уровень.

Простота схемы действий освобождает создателя программы от необходимости изучения системы аппаратного управления. Для создания программы инженеру достаточно владеть информацией о том, с какого входа поступает сигнал и как он должен откликаться на выход.

Время отклика на сигнал зависит от длительности одного цикла действующей программы.

Отличием ПЛК контроллеров от комбинационных аппаратов заключается в том, что они обладают памятью, что позволяет им реагировать на текущие события. Память также позволяет перепрограммировать, осуществлять управление во времени, производить цифровую обработку сигналов, что поднимает ЛПК контроллер на более совершенный уровень.

Входы и выходы

Программируемый логический контроллер может иметь входы трех типов. Это:

  • аналоговый;
  • дискретный;
  • специальный.

Один дискретный вход принимает один бинарный электронный сигнал. При этом практически все стандартные входы принимают электрический сигнал мощностью 24 Вт, при типовом значении тока 10 мА.

Аналоговый вход обеспечивает прием аналогового сигнала, отражающего уровень напряжения или тока. При этом в каждый временной момент напряжение и ток соответствуют определенной физической величине: температуре, весу, давлению, положению, скорости, частоте и т.д.

Поскольку программируемые логические контроллеры представляют собой цифровую вычислительную технику, то аналоговые сигналы подвергаются преобразованию. Для осуществления преобразования аналогового сигнала в цифровой в программируемых логических контроллерах применяются 10-12-ти разрядные преобразователи.

В условиях современного автоматизированного производства этого показателя достаточно для обеспечения точности управления техническим процессом.

Применение преобразователей этого класса на производстве оправдано и тем, что преобразователи более высокой разрядности реагируют на индустриальные помехи, которые неизбежны в условиях, где работает контроллер.

  • Поскольку все аналоговые входы многоканальные, то приходится использовать коммутатор, посредством которого осуществляется подключение входа АЦП к требуемому модулю.
  • Таким образом, все аналоговые и дискретные входы обеспечивают потребности промышленной автоматики, поэтому необходимость в использовании специальных входов возникает крайне редко, и требуется при необходимости обработки отдельных сигналов с большими временными затратами, что обусловлено программным затруднением.
  • В основном, ПЛК со специализированными входами применяются там, где необходим подсчет импульсов, измерение длительности и фиксация фронтов.

Такой вход может быть использован там, где необходимо измерить скорость и положение вращения вала, поскольку такое устройство оснащено поворотными шифраторами, формирующими определенное количество импульсов, рассчитанных на каждый оборот вала.

При этом частота импульсов очень высокая и равна нескольким мегагерцам. Даже если ПЛК оснащен быстродействующим процессором, подсчет импульсов будет занимать большое количество времени.

В этом случае, использование специального входа будет оправдано, поскольку обеспечит обработку входных импульсов и формирование сигналов необходимой величины для реализации программы.

Другой тип специализированных входов — входы прерывания, они обеспечивают быстрый запуск пользовательских задач, которые необходимо выполнять при прерывании работы основной программы. Этот тип специализированных входов широко используется и является достаточно востребованным.

Классификация ПЛК по типу конструкции

По своей конструкции ПЛК могут быть:

  • модульными, оснащающимися различным набором модулей входов и выходов, предусмотренных реализации конкретной задачи;
  • моноблочными, оснащенными определенным количеством входов и выходов;
  • распределительными, оснащенными модулями, отдельными входами и выходами, установка которых возможна на существенном расстоянии.

Языки программирования

Технологический язык дает возможность всем участникам процесса — инженерам, технологам и программистам, понимать суть задачи и находить ее решение.

Так, если технолог дает установку на необходимые процессы, он не использует формализованный алгоритм процесса, вследствии чего программист, при создании программы, вынужден вникать в суть технологического процесса.

В то же время, создавая программу, программист остается единственным участником процесса, понимающим язык программ.

В связи с этим, возникают сложности, для преодоления которых и был придуман технологический язык, одинаково понятный всем участникам процесса. Именно технологический язык позволил упростить процесс программирования.

  1. Сегодня разработаны технологические языки, а также установлен стандарт МЭК-61131-3, который был разработан Международной Электротехнической Комиссией.
  2. Все производители должны придерживаться установленного стандарта и предлагать устройства, оснащенные одинаковыми по интерфейсу и принципу действия командами.
  3. Этот стандарт включает в себя 5 языков:
  • языком функциональных релейных блоков является Sequential Function Chart;
  • для функциональных блоковых диаграмм, предусмотрен язык Function Block Diagram;
  • для релейных диаграмм, принят язык Ladder Diagrams;
  • язык структурированного текста Statement List напоминает Паскаль;
  • языком инструкций является Instruction List , он представляет собой ассемблер, оснащенный аккумулятором и переходом по метке.

LAD — это простой язык, напоминающий логическую схему реле, что позволяет любому инженеру составить программу. FBM похож на схему логических элементов, что также упрощает создание программ для инженеров.

Выбор языка, в основном, базируется на личном опыте программирующего инженера. При этом некоторые действия легко откликаются на один язык, создавая определенные трудности в другой области. Для решения таких задач создана возможность переконвертирования готовой программы с одного языка на другой.

Самыми распространенными сегодня языками программирования являются LAD, STL, FBD, которые наиболее часто предусмотрены производителями ЛПК самых известных компаний.

ПЛК: классификация, принцип работы, выбор

ПЛК — программируемые логические контроллеры (промышленные контроллеры).

Контроллеры для автоматизации крупных дискретно-непрерывных производств на базе открытых стандартов и сети Industrial Ethernet.

DCS PLC

ПЛК в составе распределённых систем управления (РСУ) для автоматизации крупных опасных непрерывных производств с резервированием ЦПУ, модулей ввода-вывода, блоков питания и полевых шин.

Читайте также:  Устройство и принцип работы аккумулятора

Programmable Logic Controller (PLC)

Программируемые логические контроллеры для автоматического управления преимущественно дискретными операциями (упаковка, инструментальная обработка, конвейерные системы, сборка и т. п.).

Large PLC

ПЛК для автоматизации крупных дискретных производств.

Small PLC

ПЛК для автоматизации небольших производств, OEM-производителей автоматических линий и технологических установок.

NC-based PLC

ПЛК в станках с ЧПУ (в конструктиве стойки ЧПУ).

Motion Controller

Контроллеры для управления сервоприводами в системах управления движением: ЧПУ, контурное управление, позиционирование, синхронизация скорости и положения (электронный редуктор).

PLC-based Motion Controller

Контроллер движения в конструктиве ПЛК.

Drive-based Motion Controller

Контроллер движения в конструктиве сервопривода.

NC-based Motion Controller

Контроллер движения в конструктиве стойки ЧПУ.

Safety PLC

Large Safety PLC

Контроллеры для ПАЗ опасных непрерывных производств.

Small Safety PLC

Контроллеры в системах приборной безопасности травмоопасных машин, представляющих угрозу здоровью и жизни персонала (прессы, станки, роботы и т.п.).

Remote Terminal Unit (RTU)

Управляемые по радиоканалам телеметрические контроллеры для автоматизации удалённо расположенных объектов (компрессорные станции, скважины, канализационные насосные станции и т. п.).

PC-based PLC

ПК-совместимые контроллеры.

Soft-PLC

Программа, реализующий функции ПЛК на базе ПК:

  • Включает PLC систему реального времени
  • Может инсталлироваться на любой ПК с установленной коммуникационной картой для связи с удалёнными входами-выходами (Remote I/O) или картой входов-выходов (PC-based I/O)
  • Использует рабочую память ПК
  • Для сложных задач управления программа может разрабатываться на C/C++ и встраиваться в цикл PLC

Slot-PLC

ПЛК в формате PC-card (PCI, ISA):

  • Устанавливается в свободный слот ПК
  • Запитывается от ПК, но имеет вход для подключения ИБП
  • Имеет встроенную память и слот для расширения памяти
  • Буферная батарейка защищает данные оперативной памяти
  • Работает независимо от CPU компьютера
  • Имеет выход на промышленную шину, может использовать стандартные модули удалённого ввода-вывода
  • Имеет встроенную PLC систему реального времени
  • Может иметь в комплекте OPC-сервер для связи с PC
  • Может иметь в комплекте софт HMI

OPLC

Два-в-одном: PLC + OP в одном корпусе (контроллер в конструктиве операторской панели).

Logic Relay

Интеллектуальные программируемые реле – микроконтроллеры для простейших задач релейной логики (таймеры, часы реального времени, счётчики, компараторы, булевские операции) с ограниченным функционалом (память, количество дискретных входов-выходов, расширяемость, коммуникабельность).

Принцип работы ПЛК

ПЛК предназначены для автоматического управления дискретными и непрерывными технологическими процессами.

Основные принципы работы ПЛК:

  • Цикличность
  • Работа в реальном масштабе времени, обработка прерываний

Цикличность работы ПЛК

В одном цикле ПЛК последовательно выполняет следующие задачи:

  1. Самодиагностика
  2. Опрос датчиков, сбор данных о текущем состоянии технологического процесса
  3. Обмен данными с другими ПЛК, промышленными компьютерами и системами человеко-машинного интерфейса (HMI)
  4. Обработка полученных данных по заданной программе
  5. Формирование сигналов управления исполнительными устройствами

Время цикла

Время выполнения одного цикла программы зависит от:

  • размера программы
  • количества удалённых входов-выходов
  • скорости обмена данными с распределённой периферией
  • быстродействия ЦПУ

Время цикла (время квантования) должно быть настолько маленьким, чтобы ПЛК успевал за скоростью изменения переменных процесса (см. теорию автоматического управления), в противном случае процесс станет неуправляемым.

Watchdog

Строжевой таймер следит за тем, чтобы время цикла не превышало заданное.

Обработка прерываний

По прерываниям ПЛК запускает специальные программы обработки прерываний.

Типы прерываний:

  • Циклические прерывания по времени (например, каждые 5 секунд)
  • Прерывание по дискретному входу (например, по сработке концевика)
  • Прерывания по программным и коммуникационным ошибкам, превышению времени цикла, неисправностям модулей, обрывам контуров

Модули ПЛК

  1. Корзина для установки модулей
  2. Стабилизированный блок питания AC/DC (~220В/=24В)
  3. Центральное процессорное устройство (ЦПУ) с интерфейсом для подключения программатора, переключателем режимов работы, индикацией статуса, оперативной (рабочей) памятью, постоянной памятью для хранения программ и блоков данных
  4. Интерфейсные модули для подключения корзин расширения локального ввода-вывода и распределённой периферии
  5. Коммуникационные модули для обмена данными с другими контроллерами и промышленными компьютерами
  6. Модули ввода-вывода
  7. Прикладные модули (синхронизация, позиционирование, взвешивание и т.п.)

Функции устройств ввода

  1. Электрическое подключение и питание технологических датчиков (дискретных и аналоговых)
  2. Диагностика состояния (обрыв провода, контроль граничных значений, короткое замыкание и т.п.)
  3. Формирование цифровых значений (машинных слов) технологических параметров
  4. Передача этих данных в память ПЛК для дальнейшей обработки

Функции устройств вывода

  1. Электрическое подключение исполнительных устройств
  2. Диагностика состояния (обрыв провода, контроль граничных значений, короткое замыкание и т.п.)
  3. Приём управляющих машинных слов из памяти ПЛК
  4. Формирование управляющих сигналов (дискретных и аналоговых)

Типы устройств ввода-вывода

  • Модули локального ввода-вывода располагаются:
    • в одной корзине с ЦПУ
    • в соседних корзинах в одном шкафу с ЦПУ
    • в корзинах в соседних шкафах в одном помещении с ЦПУ
  • Модули распределённого ввода-вывода (децентрализованная периферия) располагаются удалённо (в другом здании или в поле по по месту управления) и связываются с ЦПУ по промышленной полевой шине. Станции удалённого ввода-вывода могут иметь взрывозащищённое исполнение или повышенный класс защиты корпуса (например, IP67) и устанавливаться без шкафа

Функции коммуникационных модулей

Коммуникационные модули предназначены для обмена данными:

  • с удалёнными модулями ввода-вывода (Profibus, Modbus и др.)
  • с программаторами, панелями оператора (HMI) и другими контроллерами
  • с полевыми устройствами (HART, Foundation Fieldbus и др.)
  • с сервоприводами (SERCOS)
  • с промышленными компьютерами верхнего уровня (Industrial Ethernet и др.)
  • по радиоканалам (GSM, GPRS)
  • по телефонным линиям
  • по Internet (встроенные web-серверы публикуют на своих страницах статусную информацию)

Выбор ПЛК

Выбор платформы автоматизации

  • Выбор платформы определяет и весь ваш будущий выбор.
  • ПЛК является первым пунктом в выборе платформы.
  • Правильный выбор платформы позволяет минимизировать расходы жизненного цикла системы управления:
  • склад запасных частей и сервисное обслуживание
  • обучение и сертификацию обслуживающего персонала
  • приобретение лицензий на средства разработки прикладного ПО
  • интеграцию (бесшовная интеграция)
  • миграцию (переход со старого оборудования на новое)
  • программы и сикдки для ключевых клиентов

Определение количества точек ввода-вывода

Желательно максимально точно определить общее количество точек ввода-вывода (с учётом резервирования), чтобы подобрать ПЛК соответствующей производительности, или заранее предусмотреть модель контроллера с большим запасом по расширяемости.

  • Дискретные входы (стандартные и быстродействующие импульсные)
  • Аналоговые входы для подключения датчиков:
    • токовых (0..20мА, 4..20мА)
    • «напряженческих» (-10..+10В, 0..+10В)
    • термопар и термосопротивлений (способ подключения: 2-х, 3-х или 4-х проводное подключение)
  • Дискретные выходы (мокрый контакт)
  • Релейные выходы (сухой контакт):
    • тип нагрузки (резистивная, индуктивная, резистивно-индуктивная)
    • величина тока (в Амперах)
    • напряжение (~220В, =24В)
  • Аналоговые выходы:
    • токовые (0..20мА, 4..20мА)
    • «напряженческие» (-10..+10В, 0..+10В)
  • Интерфейсы для подключения угловых или линейных датчиков скорости, положения (энкодеров, резольверов, синусно-косинусных)

Определение архитектуры системы управления

  1. Составить список объектов автоматизации (производственных площадок, цехов, участков, технологических линий, подсистем)
  2. Определиться с количеством ПЛК: если объекты управляются независимо друг от друга и вводятся в эскплуатацию поочередно, то можно предусмотреть для них отдельные контроллеры
  3. В зависимости от объёма и скорости обмена данными, территориального расположения объектов управления необходимо выбрать тип и топологию промышленной сети, требуемое коммуникационное оборудование
  4. Для минимизации длины кабельных соединений используются станции распределённого ввода-вывода
  5. Расписать точки ввода вывода по контроллерам, шкафам локального и децентрализованного ввода-вывода, определить количество и типы модулей ввода-вывода с учётом запаса по свободным каналам ввода-вывода
  6. В зависимости от направления обмена данными между ПЛК необходимо правильно выбрать конфигурацию Master – Slave (Ведущий – Ведомый): контроллеры типа Slave не могут обмениваться данными друг с другом

Масштабируемость

Масштабируемость – это возможность подобрать промышленный контроллер оптимальной конфигурации под конкретную задачу (не переплачивая за избыточную функциональность), а при необходимости расширения – просто добавить недостающие модули без замены старых.

Выбор блоков питания

Контроллеры подключаются к стабилизированным импульсным источникам питания. Необходимо аккуратно подсчитать суммарный ток, потребляемый всеми модулями контроллера и подобрать блок питания с соответствующей нагрузочной способностью.

Пример последствий неправильного выбора блока питания

Выходные модули установки приготовления клея для варки целлюлозы иногда отключались и испорченный клей приходилось выбрасывать тоннами. К финскому проекту ни у кого претензий не возникало. Заменили все модули ввода-вывода — не помогло. Грешили на случайные помехи из-за плохого заземления.

Оказалось, что в определённых ситуациях (как-бы случайно) срабатывало такое «большое» количество входов и выходов, что суммарный потребляемый ими ток на мгновение превышал допустимый выходной ток блока питания и модули вывода отключались. Заменили блок питания на более мощный и проблема была решена.

Программное обеспечение

  • Очень полезен программный симулятор, с помощью которого можно отладить программу без подключения к ПЛК
  • Удобно, если для программирования ПЛК можно использовать стандартный ноутбук и стандартный кабель (USB или Ethernet)
  • Проще найти программиста, если контроллер поддерживает стандартные языки программирования IEC61131:
    • LD (Ladder Diagram) – графический язык релейной логики
    • IL (Instruction List) – список инструкций
    • FBD (Function Block Diagram) – графический язык диаграмм логических блоков
    • SFC (Sequential Function Chart) – графический язык диаграмм состояний
    • ST (Structured Text) – текстовый язык программирования высокого уровня

Системы ЧПУ

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock
detector