Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.
Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов.
Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.
В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.
Водоросли отапливают дома
Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна.
Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза.
Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.
Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза.
Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо.
Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.
По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов.
Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге.
Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.
«Лежачие полицейские» освещают улицы
Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России.
Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой.
Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу.
В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.
Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо».
По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин.
За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.
Больше, чем просто футбол
Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.
Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор.
Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.
Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.
Скрытая энергия вулканов
Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон.
Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока.
При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.
На данный момент существуют лишь две небольшие действующие электростанции подобного типа – во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).
Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.
Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.
Энергия из тепла человека
Принцип термоэлектрических генераторов, работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.
Такой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.
Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.
В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.
Шаги по «умной» тротуарной плитке
На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.
Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.
Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.
Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.
Велосипед, заряжающий смартфоны
Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства.
Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB.
Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов.
Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.
Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии.
Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.
Польза от сточных вод
Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод, загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.
Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.
Для производства электричества может использоваться почти любой тип органического отходного материала – не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.
«Бумажная» энергия
Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.
Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны.
Электроны направляются через внешнюю цепь для выработки электроэнергии.
Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).
Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало – его хватает лишь на питание небольших портативных гаджетов.
Смотреть далее: 10 самых красивых ветряных электростанций мира
Электричество из живых растений: зеленые электростанции
Компания под названием Plant-e из Нидерландов трансформирует энергию живых зеленых растений в электрическую, которая будет использоваться в практике. Например, уже сейчас этой энергии может хватить, чтобы обеспечить работу светодиодных осветительных приборов, точек Wi-Fi и зарядки батарей мобильных электронных устройств.
Ученые не перестают заниматься самыми смелыми экспериментами в области биоэнергетики.
Получение электрической энергии из живых растений – перспективное направление в этой сфере, которое позволит хотя бы отчасти решить проблему энергообеспечения отдельных регионов планеты с низким уровнем экономического развития.
Компания Plant-e из Нидерландов трансформирует энергию растений в электрическую энергию, которую можно использовать в различных целях.
Зеленые электостанции
Электричество можно получать из растений
На сегодняшний день очень актуальна тема новых, дополнительных источников электрической энергии.
Подписывайтесь на наш аккаунт в INSTAGRAM!
Один из альтернативных методов в этой области открыли сотрудники компании Plant-e, которые досконально изучили определенные процессы, имеющие место в биосфере. Для получения электроэнергии голландцы использовали один из побочных продуктов реакции фотосинтеза (это учат на уроках биологии в школе).
Электричество, получаемое из живых растений
Исследователи высаживают растения особого вида в специально подготовленные для этого контейнеры, изготовленные из пластика, площадью до 1/4 метра кв. Растения активно растут и в результате фотосинтеза вырабатывают определенные сахаристые соединения.
Объем сахара, который вырабатывают растения, значительно превосходит необходимость в нем этих растений и излишки сахара «сбрасываются» посредством корневой системы обратно в грунт.
Сахар, полученный в растениях и попавший в грунт, начинает вступать в реакцию с кислородом в атмосфере и в ходе этой реакции выделяются свободные электроны.
Электроды при погружении в грунт собирают свободные электроны, трансформируя их в электрический ток, а объем электричества, которое вырабатывается в данном процессе, вполне достаточен для обеспечения энергией светодиодных осветительных приборов, точек Wi-Fi и даже зарядки батарей мобильных электронных устройств.
Основатели компании Plant-e уверены, что разработанная ими биотехнология выработки электроэнергии найдет применение в слабо развитых и удаленных регионах планеты, там, где естественные условия подходят для роста растений и где, по ряду причин, нет возможности подключать к эксплуатации другие технологии получения энергии.
Прямая трансформация световой энергии в электрическую заложена в принципе работы генераторов, содержащих хлорофилл. Хлорофилл под действием солнечного света может отдавать и присоединять электроны. М.
Кальвин еще в далеком 1972 году предложил концепцию создания фотоэлемента, в котором источником электротока был бы хлорофилл, способный при условии освещения отнимать электроны от заданных веществ и передавать их каким-то другим. Кальвин взял в качестве проводника, вступающего в контакт с хлорофиллом, соединение оксид цинка.
При освещении этой системы в ней возникал электрический ток плотностью 0,1 микроампера на один квадратный см. Данный фотоэлемент работал непродолжительное время, так как хлорофилл быстро утрачивал свойство отдавать электроны. Чтоб продлить время действия фотоэлемента использовался еще один источник электронов — гидрохинон.
В такой системе зеленый пигмент отдавал уже не только свои, но и электроны гидрохинона. Простые математические расчеты гласят, что подобный фотоэлемент площадью 10 квадратных м имеет потенциальную мощность до одного киловатта.
История развития
Профессор Фудзио Такахаси из Японии для выработки электроэнергии брал хлорофилл, полученный из зеленых листьев шпината. Транзисторный приемник, к которому присоединили солнечную батарейку, благополучно работал.
Помимо этого, на Японских островах осуществляются исследования по трансформации солнечной энергии в электрическую при помощи цианобактерий, выращенных в специальной питательной среде. Цианобактерии наносятся тонким слоем на прозрачный электрод из оксида цинка и с противоэлектродом погружают в так называемый буферный раствор.
И когда на бактерии попадет свет, в цепи рождается электрический ток. В 1973 году американские ученые У. Стокениус и Д. Остерхельт сделали описание своеобразного белка мембран фиолетовых бактерий из соленых озер Калифорнийской пустыни. Белок этот назвали бактериородопсином. Интересно, что бактериородопсин возникает в мембранах галобактерий при нехватке кислорода.
А дефицит кислорода в водоемах наблюдается при активном развитии галобактерий. Посредством бактериородопсина бактерии усваивают солнечную энергию, возмещая имеющийся в результате прекращения дыхания недостаток энергии.
Подписывайтесь на Эконет в Pinterest!
Что такое бактериородопсин
Бактериородопсин выделяют из солелюбивых галобактерий, отправив их в воду (эти бактерии замечательно себя чувствуют в растворе кухонной соли). Галобактерии переполняются водой и лопаются, естественно, их содержимое перемешивается с водной средой.
Но мембраны, содержащие бактериородопсин, не поддаются разрушению, так как имеют стойкую “упаковку” своих пигментарных молекул. Эти молекулы образуют белковые кристаллы — фиолетовые бляшки. В них молекулы бактериородопсина сгруппированы в триады, а триады — в правильные шестиугольники.
Бляшки по размеру крупнее остальных компонентов галобактерий, и поэтому их можно выделить методом центрифугирования. В результате промывки центрифугата остается фиолетовая масса пастообразной консистенции.
На 75% она состоит из бактериородопсина и на 25% — из фосфолипидов, которые заполняют пространства между белковыми молекулами.
Фосфолипидами называются молекулы жиров в соединении с остатками фосфорной кислоты. Еще каких-то веществ в центрифугате нет, поэтому создаются удобные условия для экспериментов с бактериородопсином. Данное сложное соединение необычайно устойчиво к воздействию среды. Оно не теряет своей активности при нагреве до 100 °С и спокойно хранится в холодильнике на протяжении лет.
Бактериородопсин имеет устойчивость к кислотам и окислителям. Причина этой устойчивости кроется в том, что галобактерии обитают в необыкновенно суровой среде — в насыщенных солевых растворах, например, в водах озер в природной зоне пустынь. В подобной сильно соленой и перегретой среде организмы, с тонкими мембранами не выживают.
Этот факт необычайно интересен как возможности бактериородопсина как трансформатора световой энергии в электрическую. Когда мы выпавший в осадок под влиянием ионов кальция бактериородопсин освещаем, то прибор вольтметр продемонстрирует присутствие электрического потенциала на поверхности мембран. Если убрать свет, потенциал пропадает.
В итоге было доказано, что бактериородопсин способен выступать в качестве генератора электрического тока.
Белковые генераторы
В лаборатории специалиста в сфере биоэнергетики В. П. Скулачева досконально изучался процесс встраивания бактериородопсина в мембрану и условия работы его как светозависимого генератора электрического тока.
Со временем в данной лаборатории были изготовлены электрические элементы с использованием белковых генераторов электрического тока. В таких элементах имелись мембранные фильтры, пропитанные фосфолипидами с бактериородопсином и хлорофиллом.
Специалисты утверждают, что подобные фильтры с белками-генераторами, если их соединить последовательно, могут выступать в качестве электробатареи.
В университете Калифорнии создали идентичную батарею, которая входе одноразового использования в продолжение 1,5 часов давала светиться электрической лампе. Выводы биоэнергентиков позволяют надеяться, что фотоэлементы на базе бактериородопсина и хлорофилла смогут применяться как генераторы электроэнергии.
Описанные выше опыты — начальный этап в разработке новых типов фотоэлектрических и топливных элементов, трансформирующих световую энергию с высокой результативностью. Видимо, недалек тот день, когда жители Земли станут извлекать «электричество из растений».
Исчерпаемые источники энергии рано или поздно подойдут к концу. На планете иссякнут запасы нефти, газа, угля. И выработка электрической энергии на гидроэлектростанциях, тепловых (работающих на угле), атомных электростанциях станет вчерашним днем.
Все эти технологии, активно работающие в ХХ веке, нанесли и продолжают наносить колоссальный вред окружающей среде. А человечество нуждается в электрической энергии как никогда. Представьте, что на ваших гаджетах сели батареи, а монитор домашнего или рабочего компьютера не светится привычным светом.
Без электрической энергии жизнь цивилизации будет парализована. Возможно, такие «зеленые» электростанции и подобные им разработки станут панацеей в будущем и спасут людей от энергетического кризиса? Ведь уже сегодня значительную долю электроэнергии получают на альтернативных — ветровых, приливных, волновых станциях.
Подобные экологичные пути выработки электроэнергии не наносят вред окружающей среде и со временем помогут отказаться от опасных для человека и природы производств.опубликовано econet.ru.
Задайте вопрос по теме статьи здесь
P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © econet
Действительно зеленое электричество
В погоне за альтернативными источниками энергии ученые не обошли стороной и царство растений. Разумеется, речь идет о гораздо более продвинутых технологиях, чем «классическое» извлечение электроэнергии из картофелины или апельсина с помощью воткнутых в них электродов.
Целая область науки ищет, чем бы заполнить новую страницу в истории взаимоотношений человека и зеленых легких планеты.
Подробнее об этом, а также о развиваемом в России проекте «Green Spark», который уже дает энергию из биофотогальванических ячеек, можно будет узнать 19 мая на фестивале «Политех».
Как зарядиться от картошки
По интернету давно бродят фото- и видеоизображения горящих лампочек, присоединенных к картофелине (апельсину, лимону, яблоку). Также в сети полно инструкций, как в домашних условиях изготовить картошкобатарейку.
Достаточно взять картофелину, медный и оцинкованный электроды (гвозди, например), соединительные провода и светодиодную лампочку для демонстрации электрического эффекта.
В один бок корнеплода (или фрукта) втыкаем цинковый электрод, затем соединяем его с лампочкой, другой полюс лампочки соединяем с медным электродом, который втыкаем в ту же картофелину, но с другого бока.
Все эти действия рациональны и химически объяснимы: кислая среда внутри растительного источника создает необходимое количество свободных протонов (H+).
В такой среде при взаимодействии с активным (хорошо отдающим электроны) металлом выделяются свободные носители отрицательного элементарного заряда, готовые бежать по цепи и заставлять лампочку светиться.
В свою очередь, поток протонов от анода к катоду, как положено в батарейках, создает электродвижущую силу и замыкает цепь. Катод делается из менее активного металла (цинк против меди). А в качестве активной среды подойдет даже лист или стебель — любая, даже слабокислотная, часть растения.
Важный вопрос: насколько такие аккумуляторы эффективны? (И не полезнее ли будет их употреблять в классическом виде — в пищу?) Для ответа на него есть много экспериментальных демонстраций, которые позволяют рассчитать: чтобы зарядить смартфон, понадобится около 50 килограммов картофеля. Безусловно, конкретные характеристики растительного аккумулятора зависят от многих факторов — кислотности источника энергии (так, лимон явно кислее картофеля), свежести образца и даже кислотности почвы, в которой он вырос. Прибавим сюда качество гвоздей, сплавов, которыми эти гвозди покрыты и так далее. Но, как ни подбирай ингредиенты, явным недостатком вегетарианской подзарядки будет ее невысокая эффективность при большой отходности. Что картофелина, что лимон работать будут недолго, их придется часто менять, и пока зарядится смартфон, не один мешок опустеет.
Так что этот способ — скорее забавная шутка или фантазия для постапокалиптического сценария, чем надежда для удаленных и лишенных промышленных электростанций уголков Земли.
Зеленый лист — солнечная батарея мечты
Солнечная батарея — один из самых популярных экологичных энергетических девайсов. В ее основе лежит красивая идея — взять солнечную энергию, которая и так греет планету, и извлечь из нее электроэнергию без всяких побочных эффектов.
Однако у этих устройств, несмотря на то, что они изобретены уже давно и с тех пор постоянно совершенствуются, есть ряд существенных недостатков.
Главные из них — низкая эффективность (лишь некоторые коммерческие образцы обладают КПД на уровне 20 процентов) и ограниченная функциональность (работают, только пока светит солнце).
Растения — те же солнечные батареи, просто естественные. В процессе фотосинтеза молекулы пигментов, находящиеся в мембранах тилакоидов, поглощают энергию солнечного света и преобразуют ее в энергию химических соединений.
Физически при поглощении кванта света определенной частоты электрон в молекуле пигмента переходит из основного состояния в возбужденное, то есть на более высокий энергетический уровень.
«Разрядка» возбужденного состояния молекулы хлорофилла может происходить в виде выделения тепла или в флуоресценции, кроме того энергия возбужденного состояния может передаваться соседней молекуле пигмента или расходоваться на фотохимические процессы.
Более 90 процентов хлорофилла хлоропластов входит в состав светособирающих комплексов — своеобразных антенн, переносящих энергию возбуждения к реакционным центрам первой и второй фотосистемы для последующего первичного разделения зарядов.
В этих же фотосистемах сперва происходят окислительно-восстановительные превращения хлорофилла, а затем — фиксация энергии света в химическую энергию.
Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, далее в ходе нескольких химических реакций образуются кислород и свободные электроны и протоны (H).
Кислород удаляется во внешнюю среду, а протоны приводя к тому, что мембрана тилакоида с одной стороны заряжается положительно за счет H+, с другой стороны — отрицательно за счет электронов. Далее процесс продолжается и завершается уже в без участия солнечного света синтезом органики из фиксированного из атмосферы углекислого газа.
Инженеры с завистью смотрят на зеленые листья и думают, как бы им подключиться к этому мембранному конденсатору.
Ведь фотосистемы растительных пигментов используют солнечную энергию с очень большой эффективностью (если считать в поглощенных фотонах на вырабатываемый электрон).
Некоторые даже утверждают, что нашли путь к хакингу фотосинтеза и уводу электронов прямо из-под носа у реакционных центров.
Биотехнический симбиоз
К счастью, растения помогают добыть электричество и другими способами, которые гораздо проще поддаются перепрофилированию в сторону удовлетворения потребностей цивилизации.
В последние годы популярным направлением развития «зеленых» гальванических элементов стали так называемые топливные ячейки «бактерия + растение» (plant-microbial fuel cells, PMFCs).
В отличие от батареек на картошке, такой тип растительных источников энергии, теоретически, является самообновляемым: все, что ему нужно для функционирования и генерации, — это солнечный свет, углекислый газ, вода и подходящие растения.
Прообразом подобной концепции был некоторый гальванический контейнер, в котором под воздействием бактерий в осадочном грунте (например, в иле на дне водоемов) расщеплялась содержащаяся в нем органика (Microbial fuel cells, MFCs). Такой осадочный реактор в комплекте с электродами играет роль анода, катод при этом погружен в воду. Как и в стандартной «батарейке», положительные ионы движутся от анода к катоду, замыкая цепь.
Биофотогальваника
Вышеописанную систему удалось усовершенствовать, пересадив в илистый реактор водные растения, — именно этот апгрейд позволяет инженерам надеяться на самовоспроизводимость источника питания.
Растения, поглощая солнечную энергию и углекислый газ, в процессе фотосинтеза генерируют органические вещества, часть из которых попадает в почву.
Симбиотические бактерии, живущие вблизи корней, расщепляют эту органику, выделяя электроны в качестве побочного продукта. Эти электроны могут быть захвачены анодом.
Эффективность биофотогальванических систем зависит от многих факторов. Это и количество выделяемой в почву органики, и доступность этой органики для микроорганизмов, и эффективность «сбора» электронов фотогальванической системой.
Первые два фактора практически недоступны для улучшения — в лучшем случае человек может подобрать растения, выделяющие органику с более длинными углеродными цепями или с более «удобной» для микроорганизмов корневой системой.
Поэтому наиболее перспективный пункт — повышение эффективности захвата электронов.
Microbial fuel cells, MFCs
Plant–microbial fuel cells, PMFCs
Но и тут инженеров и дизайнеров ожидает много сложностей. Например, более «легкая», с точки зрения расщепления бактериями, органика (глюкоза, аминокислоты), с одной стороны, могла бы привести к повышению эффективности выделения электронов. Однако это улучшение реализуется только в модельных системах, в реальной жизни в контейнере быстро заводятся бактерии, перерабатывающие простую органику без всякого выделения электронов. А ведь ученые хотели бы использовать в качестве фотогальванических ячеек не только лабораторные сосуды, но и реальные системы с подходящими свойствами — например, неиспользуемые рисовые поля (paddies).
Или, например, переход от MFCs к PMFCs дал надежду на самовоспроизводимость системы, но привел к нежелательному эффекту: растения, помимо постоянной подачи органики, еще и обогащают осадочный грунт кислородом, который успешно конкурирует с анодом в сборе электронов. Таких неожиданных препятствий, снижающих показатели эффективности ячеек, придется преодолеть еще много, и пока разработки находятся на начальном уровне, невозможно предположить, станет ли подобная технология экономически рентабельной.
«Зеленая искра»
В России биологические фотогальванические ячейки разрабатываются в рамках проекта «Green Spark». Координаторами проекта в «Шухов Лаб» (Лаборатории прототипирования городов будущего) являются Елена и Иван Митрофановы, совместно с Паоло Бомбелли из Кембриджского университета.
Сейчас они работают над конструкцией со стенами высотой два с половиной метра, состоящей из десятков подвешенных в керамических модулях ячеек-батарей, наполненных симбиотической системой растений и бактерий.
В зависимости от конфигурации, ячейки могут давать напряжение от 0,2 до 0,6 вольта. Средняя эффективность растительно-микробного симбиоза составляет примерно 3–5 микровольт с квадратного метра.
Итоговая сила тока, естественно, зависит от конфигурации соединения блоков.
Конструкция блоков специально разработана так, чтобы воссоздать естественный микроклимат для используемых растений. Роль анода в ячейках играет углеволокно, которое не окисляется, не вредит биосистеме и служит долго. Однако и эта конструкция требует оптимизации, так как ее текущая эффективность сбора электронов составляет примерно один процент.
«Проект и область исследования достаточно новые, то есть совсем немного людей ведут научные разработки в этом направлении. Наверняка через пять-десять лет мы сможем собирать если не все электричество [вырабатываемое в ячейках], то явно гораздо больший процент», — говорит Елена Митрофанова, архитектор-дизайнер и координатор проекта «Green Spark».
Инсталляцию, представляющую собой последовательные и параллельные электрические цепи блоков для подзарядки экрана, который транслирует сообщения и визуализирует поступающее напряжение, можно будет подробно изучить 19 мая на фестивале «Политех».
«Вода в ячейках необходима для электронной проводимости и служит солевым мостиком, поэтому мы выбираем влаголюбивые растения — это единственный критерий их отбора. В нашем проекте электроны — остаточный продукт расщепления органики, собирая их, мы никак не вредим экосистеме», — говорит Елена.
Помимо наших соотечественников и их коллег из Кембриджа, подобный проект развивает голландская компания Plant-e, но уже на промышленном, а не научном уровне.
Екатерина Жданова
Электричество из живых растений, технологии будущего
Голландская компания Plant-e превращает энергию живых растений в электричество, которое может использоваться людьми в своих нуждах.
Электричество из растений
В настоящее время множество исследовательских групп занимаются поисками методов получения энергии буквально «из чистого воздуха».
Один из таких методов уже удалось обнаружить специалистам голландской компании Plant-e, которые очень пристально и тщательно изучили некоторые процессы, протекающие в живой природе.
Для получения электрической энергии они используют один из побочных продуктов фотосинтеза, процесса, протекающего в растущих растениях, и этот метод может принести электричество тем людям, которые живут на значительном удалении от всех благ цивилизации.
Технология, разработанная специалистами компании Plant-e, работает на тех же самых принципах, что и старый школьный опыт, в котором в качестве источника энергии выступает клубень обыкновенного картофеля. Однако, разработанный голландцами метод не требует нанесения повреждений самому растению.
Электричество из живых растений
Голландцы высаживают растения особого вида в специальные пластиковые контейнеры, площадь которых равна приблизительно четверти квадратного метра. Эти растения интенсивно растут и за счет процессов фотосинтеза вырабатывают некоторые виды сахаристых соединений.
Количество сахара, вырабатываемого растениями, существенно превышает потребности самого растения и его излишки «сбрасываются» через корневую систему обратно в почву.
Сахар, выработанный растениями и попавший в почву, начинает достаточно активно реагировать с атмосферным кислородом и в ходе протекающей химической реакции получается множество свободных электронов.
Электроды, погруженные в почву, собирают эти свободные электроны, превращая их в электрический ток, а количество получаемого при этом электричества достаточно для того, чтобы обеспечить потребности светодиодных осветительных приборов, точек доступа Wi-Fi или зарядки аккумуляторных батарей мобильных электронных устройств.
Используя свою технологию, компания Plant-e в ноябре 2014 года начала реализацию программы «Starry Sky».
В рамках этой программы при помощи энергии, получаемой от растений, было запитано около 300 уличных осветительных приборов, несколько точек доступа Wi-Fi и точек зарядки мобильных телефонов, располагающихся возле офиса компании в Вагенингене и на территории военного музея, бывшего военного завода, склада и базы HAMbrug возле Амстердама.
Основатели компании Plant-e надеются, что разработанная ими биологическая технология получения электрической энергии сможет найти свое применение в некоторых бедных регионах земного шара удаленных от центров цивилизации, там, где природные условия максимально благоприятны для роста растений и где, в силу различных причин не получается использовать другие технологии получения экологически чистой энергии.
Зеленые электростанции, получаем электричество
Непосредственная трансформация световой энергии в электрическую лежит в основе работы генераторов, содержащих хлорофилл. Хлорофилл под действием света может отдавать и присоединять электроны. М.
Кальвин в 1972 году выдвинул идею создания фотоэлемента, в котором в качестве источника электрического тока служил бы хлорофилл, способный при освещении отнимать электроны от каких-то определенных веществ и передавать их другим. Кальвин использовал в качестве проводника, контактирующего с хлорофиллом, оксид цинка.
При освещении этой системы в ней возникал электрический ток плотностью 0,1 микроампера на квадратный сантиметр.
Этот фотоэлемент функционировал сравнительно недолго, поскольку хлорофилл быстро терял способность отдавать электроны.
Для продления времени действия фотоэлемента был использован дополнительный источник электронов — гидрохинон. В новой системе зеленый пигмент отдавал не только свои, но и электроны гидрохинона.
Расчеты показывают, что такой фотоэлемент площадью 10 квадратных метров может обладать мощностью около киловатта.
История развития
Японский профессор Фудзио Такахаси для получения электроэнергии использовал хлорофилл, извлеченный из листьев шпината. Транзисторный приемник, к которому была присоединена солнечная батарейка, успешно работал.
Кроме того, в Японии проводятся исследования по преобразованию солнечной энергии в электрическую с помощью цианобактерий, выращенных в питательной среде. Тонким слоем их наносят на прозрачный электрод из оксида цинка и вместе с противоэлектродом погружают в буферный раствор.
Если теперь бактерии осветить, то в цепи возникнет электрический ток.
В 1973 году американцы У. Стокениус и Д. Остерхельт описали необычный белок из мембран фиолетовых бактерий, обитающих в соленых озерах Калифорнийских пустынь. Его назвали бактериородопсином.
Любопытно отметить, что бактериородопсин появляется в мембранах галобактерий при недостатке кислорода. Дефицит же кислорода в водоемах возникает в случае интенсивного развития галобактерий.
С помощью бактериородопсина бактерии усваивают энергию Солнца, компенсируя тем самым возникший в результате прекращения дыхания дефицит энергии.
Бактериородопсин, что это?
Бактериородопсин можно выделить из галобактерий, поместив эти солелюбивые создания, прекрасно чувствующие себя в насыщенном растворе поваренной соли, в воду. Тотчас же они переполняются водой и лопаются, при этом их содержимое смешивается с окружающей средой.
И только мембраны, содержащие бактериородопсин, не разрушаются из-за прочной “упаковки” молекул пигмента, которые образуют белковые кристаллы (еще не зная структуры, ученые назвали их фиолетовыми бляшками).
В них молекулы бактериородопсина объединены в триады, а триады — в правильные шестиугольники. Поскольку бляшки значительно крупнее всех других компонентов галобактерий, их нетрудно выделить путем центрифугирования. После промывки центрифугата получается пастообразная масса фиолетового цвета.
На 75 процентов она состоит из бактериородопсина и на 25 — из фосфолипидов, заполняющих промежутки между белковыми молекулами.
Фосфолипиды — это молекулы жиров в соединении с остатками фосфорной кислоты. Другие вещества в центрифугате отсутствуют, что создает благоприятные условия для экспериментирования с бактериородопсином. К тому же это сложное соединение очень устойчиво к факторам внешней среды.
Оно не утрачивает активности при нагревании до 100 °С и может храниться в холодильнике годами. Бактериородопсин устойчив к кислотам и различным окислителям.
Причина его высокой устойчивости обусловлена тем, что эти галобактерии обитают в чрезвычайно суровых условиях — в насыщенных солевых растворах, какими, по существу, являются воды некоторых озер в зоне выжженных тропическим зноем пустынь.
В такой чрезвычайно соленой, да к тому же еще и перегретой, среде организмы, обладающие обычными мембранами, существовать не могут. Это обстоятельство представляет большой интерес в связи с возможностью использования бактериородопсина в качестве трансформатора световой энергии в электрическую.
Если выпавший в осадок под воздействием ионов кальция бактериородопсин осветить, то с помощью вольтметра можно обнаружить наличие электрического потенциала на мембранах. Если выключить свет, он исчезает. Таким образом, ученые доказали, что бактериородопсин может функционировать как генератор электрического тока.
Белковые-генераторы
В лаборатории известного ученого, специалиста в области биоэнергетики В. П. Скулачева тщательно исследовались процесс встраивания бактериородопсина в плоскую мембрану и условия функционирования его в качестве светозависимого генератора электрического тока.
Позднее в этой же лаборатории были созданы электрические элементы, в которых использовались белковые генераторы электрического тока. В этих элементах имелись мембранные фильтры, пропитанные фосфолипидами с бактериородопсином и хлорофиллом.
Ученые полагают, что подобные фильтры с белками-генераторами, соединенные последовательно, могут служить в качестве электрической батареи. Исследования по прикладному использованию белков-генераторов, выполненные в лаборатории В. П. Скулачева, привлекли к себе пристальное внимание ученых.
В Калифорнийском университете создали такую же батарею, которая при однократном использовании в течение полутора часов заставляла светиться электрическую лампочку.
Результаты экспериментов вселяют надежду, что фотоэлементы на основе бактериородопсина и хлорофилла найдут применение в качестве генераторов электрической энергии.
Проведенные опыты — первый этап в создании новых видов фотоэлектрических и топливных элементов, способных трансформировать световую энергию с большой эффективностью.
Уже совсем скоро наступит день, когда человечество научится получать «электричество из растений».
Смотрите также по этой теме:
Альтернативные источники энергии в наши дни.
Электрическая энергия. Необычные способы её получения.
Будем рады, если подпишетесь на наш Блог!
[wysija_form id=»1″]
Как будет работать самая большая электростанция в Сахаре и сколько она даст энергии
Дезертификацию и деградацию земель называют «самой значительной проблемой природы нашего времени». Сейчас слово «пустыня» вызывает ассоциации в виде песчаных дюн Сахары или соляных промыслов Калахари. Тем не менее, изменение климата может привести к опустыниванию территорий по всей планете, от состояния которых зависят жизни 2 млрд людей из регионов, оказавшихся под угрозой.
Воздействие климата, неэффективное управление земельными ресурсами и нерациональное расходование пресной воды привели к деградации регионов, которые испытывают дефицит воды. В итоге на землях не растут зерновые, гибнут скот и дикая природа.
Пустыня Сахара огромна: если бы она была страной, то потеснила бы Бразилию с пятого места в рейтинге по размеру. Сила солнца, которое светит над этими территориями, также выше, чем где бы то ни было. По оценкам NASA, на каждый квадратный метр поступает в среднем от 2 000 до 3 000 кВт⋅ч солнечной энергии в год.
Профессор Университета Ноттингем Трент, Амина Аль-Хабайбе, считает, что сахарской энергии хватило бы для обеспечения электричеством всей Земли. Звучит утопично, но статья, опубликованная в журнале The Conversation, показывает способы реализации этой идеи.
Площадь Сахары составляет примерно 9 млн кв. км, а значит, сумма энергии всех солнечных лучей над пустыней –– более 22 млрд ГВт⋅ч в год. Много ли это? Гипотетическая солнечная ферма, которая покрыла бы всю пустыню, могла производить в 2 тыс. раз больше энергии, чем самые крупные электростанции мира. Суммарные объемы их производительности едва ли достигают 100 тыс. ГВт⋅ч в год.
Проложить огромный кабель из Сахары в Европу у человечества получится. Северная Африка находится очень близко к Европе. Кратчайшее расстояние между континентами –– всего 15 км, Гибралтарский пролив. Тем не менее, даже маршруты по Средиземному морю будут вполне практичным вариантом. В конце концов, самый длинный подводный силовой кабель растянулся на 600 км между Норвегией и Нидерландами.
Ветровые турбины или солнечные батареи
Сегодня существуют две практических технологии для производства электроэнергии в пустыни: концентрированная солнечная энергия (от англ. CSP, Concentrated solar power — «Хайтек») и привычные фотоэлектрические солнечные батареи. У каждого метода есть свои плюсы и минусы.
CSP использует линзы или зеркала, которые фокусируют солнечную энергию и нагреваются до огромных температур. Тепло генерирует электричество с помощью обычных паровых турбин.
Эта технология напоминает работу атомного реактора, также разгоняющего паровую турбину с помощью огромных температур. Вращение турбины создает электричество.
В некоторых системах для накопления энергии используют расплавленную соль для хранения солнечной энергии, что позволяет вращать турбину и ночью.
Пример солнечной электростанции, построенной на основе метода CSP
Технология концентрирования солнечной энергии кажется идеальным вариантом для Сахары. Прямые солнечные лучи, отсутствие облаков и высоких температур –– полный набор необходимого для максимальной продуктивности CSP.
Недостатком этого метода становится уязвимость линз и зеркал. Их легко загрязняют песчаные бури, поэтому устанавливая такие инструменты, нужно продумать и то, как часто их будут очищать. Кроме того, системы турбин и парового отопления –– механизмы, для которых требуется вода. В пустыне ее куда меньше, чем необходимо для незатратного функционирования системы.
Аль-Хабайбе предполагает, что в крупном проекте солнечную энергию можно сконцентрировать с помощью тысяч отражающих панелей. Похожий проект появился в ОАЭ: с его помощью энергетики хотят избежать проблем с фотоэлектрическими панелями, которые нельзя размещать на сильной жаре.
Добыча огромных объемов солнечной энергии с небольших территорий –– не новая идея. В 2017 году в прессе появлялись громкие сообщения о том, что США сможет полностью обеспечивать себя энергией благодаря установкам площадью 256 кв. км. Предполагаемая установка должна была состоять из системы аккумуляторов, которые обеспечивали бы круглосуточную подачу энергии.
Солнечная электростанция
Самой успешной попыткой стал Desertec, проект 2009 года. Он быстро привлек финансирование, но закрылся спустя несколько лет из-за недостатка денег. Прежде чем начать окупаться, пустынные электрические «шахты» поглощают миллиарды. Но пустынная электроустановка поменяет не только рыночную ситуацию.
Дожди над Сахарой
Солнечные и ветряные фермы могут изменить климатические условия в пустыне Сахара. Образование облаков над пустыней станет результатом работы установок, которые вырабатывают электричество. Над Африкой буквально начнутся дожди. Солнечные панели и ветряные турбины затемняют поверхность пустыни.
Ученые уже знали о локальном воздействии подобных систем на температуру и уровень влажности в регионах, в которых они устанавливаются. Тем не менее, масштаб установок, которые, возможно, установят в пустыне Сахара, делает последствия заметными.
Автор исследования, посвященного терраформированию Сахары, доктор Ян Ли, говорит: «Результаты нашей модели показывают, что крупномасштабные ветряные фермы в Сахаре удвоят количество осадков не только в самой пустыне, но и в Сахеле, где уровень повысится с 200 до 500 мм в год». В результате дождей растительный покров пустыни тоже вырастет на 20%.
Причин для таких изменений несколько. Во-первых, ветряные турбины улучшают смешивание воздуха из-за вращения лопастей. Ветряные электростанции увеличивают шероховатость поверхности и усиливают схождение ветра в области с низким давлением. В результате создается петля обратной зависимости: чем больше дождя попадает на землю, тем больше осадков с нее испаряется.
В то же время солнечные панели, которые поглощают лучи, уменьшают поверхностное альбедо –– степень отражения света от поверхности, что тоже приводит к увеличению количества осадков. Исследователи предполагают, что уменьшение отражения солнечного света вызовет 50-процентное увеличение осадков.
«Панели уменьшают поверхностное альбедо: земля поглощает больше солнечной энергии и постепенно теплеет. Это усиливает низкую температуру собственного тепла Сахары, что приводит к увеличению количества воздухов и осадков», –– объясняет доктор Ли.
Евгения Калнай, эксперт по погоде и климату в Университете Мэриленда, предложила использовать компьютерные модели для проверки изменения погоды и климата после гипотетической установки систем. Такие программы помогают ученым выяснить, как погода будет меняться со временем.
Калнай выяснила, что обе технологии смогут изменить температуру региона. Солнечные панели могут поднять температуру на 3-4 °C, а ветровые турбины повысили бы ночную температуру. Теплый воздух, который они разгоняют, поднимался бы вверх. Поскольку он содержит водяной пар, то в конечном счете мог бы конденсироваться в дождевые облака.
Более продвинутая модель предполагала три сценария: только солнечные панели, ветряные электростанции или обе технологии. Ветровые электростанции поднимали ночную температуру на 2,16 °C, при этом увеличив количество осадков в Сахаре примерно вдвое — на 0,25 мм в сутки.
Солнечные фермы повысят температуру на 1,12 °C в течение солнечного дня. Суммарное воздействие ветровых турбин и солнечных ферм изменит уровень осадков на 215,4 мм в год в Сахаре и на 500 мм в Сахеле. Среднее количество осадков будет увеличиваться по мере роста растений.
Зеленые насаждения перемещают воду с земли в воздух. Этот процесс называется эвапотранспирацией.
Гипотетическую структуру, которая может вызывать такие изменения, сложно построить. Представьте себе, что территория размером с США или Китай, то есть 9 млн кв. км, будет покрыта электроэнергетическими установками. Это Сахара будущего, в которой будет царить иной, менее засушливый климат.
Если бы человечество смогло осуществить такой эпический план, то получило бы не просто зеленую Сахару. Люди избавились бы от необходимости в ископаемом топливе: пустынная установка вырабатывала бы 82 тераватта электроэнергии в год. Сегодняшнее потребление всей планеты –– порядка 18 тераватт.
Добыча ископаемого топлива убивает планету, и это не метафора. Парниковый газ, поступающий в атмосферу, вырабатывается из-за добычи и использования угля и нефти. Уровень углекислого газа над поверхностью Земли постоянно бьет собственные рекорды. Солнце и ветер дают человечеству альтернативу.
«Кроме предотвращения антропогенных выбросов парниковых газов от ископаемого топлива, энергия ветра и солнца может дать другие неожиданные полезные климатические перемены», –– пишут исследователи.
Еще одни плюсом озеленения пустыни станет уменьшение темпов дезертификации. Сахара расширяется: за последние 100 лет она выросла на 700 тыс. кв. км. Это 10% от предыдущей площади пустыни. Аэролог Расс Дикерсон из Университета Мэриленда считает, что ветровые станции смогут приостановить процесс расширения засушливого региона.
Последнее преимущество «зеленой электрической пустыни» –– перепроизводство. Возможный избыток электроэнергии, которая будет вырабатываться на установке, позволит справиться и с другими ресурсными проблемами. Так, энергию можно было бы перенаправить на опреснение и транспортировку морской воды для тех регионов, которым не хватает пресной воды.
Конечно, на данный момент подобные идеи о превращении Сахары в оазис для всего человечества –– не более, чем гипотетические предположения, которые трудно реализовать.