Несколько способов управления однофазным асинхронным двигателем

Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки — рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

Несколько способов управления однофазным асинхронным двигателемНесколько способов управления однофазным асинхронным двигателем

Регулировать скорость вращения таких двигателей необходимо, например, для:

  • изменения расхода воздуха в системе вентиляции
  • регулирования производительности насосов
  • изменения скорости движущихся деталей, например в станках, конвеерах

В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

Способы регулирования

Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

Рассмотрим способы с изменением электрических параметров:

  • изменение напряжения питания двигателя
  • изменение частоты питающего напряжения

Регулирование напряжением

  • Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя — разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:
  • S=(n1-n2)/n2
  • n1 — скорость вращения магнитного поля
  • n2 — скорость вращения ротора
  • При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя.
  • Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз — то есть, снижением питающего напряжения.
  • При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.
  • Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.
  • На практике для этого применяют различные схемы регуляторов.

Автотрансформаторное регулирование напряжения

Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

Несколько способов управления однофазным асинхронным двигателем

  1.  На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.
  2. Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.
  3.  Преимущества данной схемы:
      • неискажённая форма выходного напряжения (чистая синусоида)
      • хорошая перегрузочная способность трансформатора

 Недостатки:

      • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
      • все недостатки присущие регулировке напряжением

Несколько способов управления однофазным асинхронным двигателем Несколько способов управления однофазным асинхронным двигателем

Тиристорный регулятор оборотов двигателя

В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

Несколько способов управления однофазным асинхронным двигателем

Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

Несколько способов управления однофазным асинхронным двигателем

  • Таким образом изменяется среднеквадратичное значение напряжения.
  • Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).
  • Ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.
  • Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:
  • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
  • добавляют на выходе конденсатор для корректировки формы волны напряжения
  • ограничивают минимальную мощность регулирования напряжения — для гарантированного старта двигателя
  • используют тиристоры с током в несколько раз превышающим ток электромотора

Достоинства тиристорных регуляторов:

      • низкая стоимость
      • малая масса и размеры 

  Недостатки:

      • можно использовать для двигателей небольшой мощности
      • при работе возможен шум, треск, рывки двигателя 
      • при использовании симисторов на двигатель попадает постоянное напряжение
      • все недостатки регулирования напряжением

 Несколько способов управления однофазным асинхронным двигателем Несколько способов управления однофазным асинхронным двигателем

Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

Транзисторный регулятор напряжения

Как называет его сам производитель — электронный автотрансформатор или ШИМ-регулятор.

Несколько способов управления однофазным асинхронным двигателем

Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы — полевые или биполярные с изолированным затвором (IGBT).

Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

  1. Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.
  2. Выходной каскад такой же как и у частотного преобразователя, только для одной фазы — диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.
  3.  Плюсы электронного автотрансформатора:
        • Небольшие габариты и масса прибора
        • Невысокая стоимость
        • Чистая, неискажённая форма выходного тока
        • Отсутствует гул на низких оборотах
        • Управление сигналом 0-10 Вольт

 Слабые стороны:

        • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
        • Все недостатки регулировки напряжением

Частотное регулирование

Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.

Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

  • На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.
  • Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.
  • Однофазные двигатели могут управляться:
  • специализированными однофазными ПЧ
  • трёхфазными ПЧ с исключением конденсатора

Преобразователи для однофазных двигателей

  1. В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.
  2. Это модель Optidrive E2
  3. Для стабильного запуска и работы двигателя используются специальные алгоритмы.

  4. При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:
  5. Xc=1/2πfC
  6. f — частота тока
  7. С — ёмкость конденсатора
  8.  В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:
  9. Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.
  10. Преимущества специализированного частотного преобразователя:
        • интеллектуальное управление двигателем
        • стабильно устойчивая работа двигателя
        • огромные возможности современных ПЧ:
          • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
          • многочисленные защиты (двигателя и самого прибора)
          • входы для датчиков (цифровые и аналоговые)
          • различные выходы
          • коммуникационный интерфейс (для управления, мониторинга)
          • предустановленные скорости
          • ПИД-регулятор

 Минусы использования однофазного ПЧ:

        • ограниченное управление частотой
        • высокая стоимость

Использование ЧП для трёхфазных двигателей

  • Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:
  • Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:
  • Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого — магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.
  • В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.
  • При работе без конденсатора это приведёт к:
  • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
  • разному току в обмотках
Читайте также:  Электронные конструкторы для изучения электротехники и электроники

Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

 Преимущества:

          • более низкая стоимость по сравнению со специализированными ПЧ
          • огромный выбор по мощности и производителям
          • более широкий диапазон регулирования частоты
          • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

Недостатки метода:

          • необходимость предварительного подбора ПЧ и двигателя для совместной работы
          • пульсирующий и пониженный момент
          • повышенный нагрев
          • отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями

Что нужно знать для правильного выбора преобразователя частоты?

Преобразователь частоты предназначен для управления скоростью вращения трехфазного асинхронного электродвигателя с короткозамкнутым ротором.

Несколько способов управления однофазным асинхронным двигателем Внешний вид частотных преобразователей

Частотные преобразователи применяются в следующих случаях:

  • при необходимости изменения скорости вращения электродвигателя;
  • при необходимости поддержания значения технологического параметра (например, давления) посредством изменения скорости вращения электродвигателя;
  • отсутствует питание 380В. Частотные преобразователи с питанием 220В поставляются на мощность до 2,2кВт включительно. Мощность двигателя при этом не теряется (Если двигатель имеет возможность переключения «звезда-треугольник» 380/220, то он может быть включен от однофазной сети 220В);
  • требуется подключение к промышленной сети двигателей с «нестандартным» напряжением питания и частотой.

Кроме основных функций, ПЧ обеспечивает

  • возможность включения реверса без дополнительного оборудования;
  • ограничение пускового тока двигателя;
  • контроль тока двигателя;
  • плавный разгон и торможение (настраиваемые по времени);
  • дополнительную защиту двигателя;
  • возможность пропуска резонансных частот;
  • стабилизацию момента двигателя даже при колебаниях входного напряжения;
  • возможность остановки с замедлением;
  • возможность экономии электроэнергии при частично загруженном двигателе (даже без датчика обратной связи);
  • работу со встроенным таймером и счетчиком;
  • переход в «спящий режим» с отключением насоса при отсутствии водопотребления;
  • возможность автоматического перезапуска при восстановлении питания.

Все перечисленные параметры (функционал) поддерживают преобразователи частоты ELHART серии EMD-MINI и EMD-PUMP.

2. Подбор частотного преобразователя

Преобразователь частоты для однофазного двигателя

Стоит обратить внимание, что стандартные частотные преобразователи не предназначены для работы с однофазными двигателями. Почти все представленные на рынке частотные преобразователи предназначены для управления скоростью вращения трехфазного асинхронного электродвигателя с короткозамкнутым ротором.

Чаще, когда говорят «однофазный преобразователь частоты», имеют ввиду частотный преобразователь с питанием от однофазный сети напряжением 220В. Такой преобразователь имеет на выходе 3 фазы по 220В и также предназначен для управления трехфазным асинхронным двигателем.

Тем не менее, преобразователи частоты для однофазных двигателей существуют, но встречаются крайне редко.

Несколько способов управления однофазным асинхронным двигателем Рисунок 1 — ПЧ для трехфазного двигателя

Подбор частотного преобразователя по мощности

При подборе преобразователя в первую очередь нужно ориентироваться на ток и напряжение питания электродвигателя. Эта информация указывается на шильдике двигателя.

Несколько способов управления однофазным асинхронным двигателем Рисунок 2 — Шильдик двигателя

  1. Напряжение на обмотках. Двигатель, шильдик которого показан рисунке 2, способен работать при трехфазном напряжении 220В (обмотки должны быть соединены в схему «треугольник») и при трехфазном напряжении 380В (соединение «звезда»). Если на шильдике указано 380/660, то такой двигатель может быть подключен к ПЧ с питанием 220В, но в таком случае не будут обеспечены номинальные характеристики двигателя.
  2. Номинальный линейный ток двигателя. Данный двигатель потребляет 1,44А при подключении треугольником (питание 220В) и 0,83А при подключении звездой (питание 380В).

Остальная информация, приведенная на шильдике электродвигателя, не влияет на выбор ПЧ.

Несмотря на указанный на шильдике двигателя ток, наиболее правильным методом определения рабочего тока является его непосредственное измерение при работе двигателя. Это позволит избежать проблем в случае работы двигателя при повышенном токе. Фактический длительный рабочий ток двигателя не должен превышать номинальный выходной ток преобразователя.

Купить частотный преобразователь подобрав его по мощности двигателя не правильно, так как мощность двигателя зависит от КПД и коэффициента мощности (cosφ), а указанная на электродвигателе мощность относится к механической мощности двигателя на валу, а не к потребляемой от источника питания активной мощности, как это принято для других потребителей электроэнергии.

Для примера сравним токи двигателей 1,5кВт с током ПЧ той же мощности ELHART EMD-MINI – 015 T (1,5кВт, 4А, 380В), ELHART EMD-MINI – 015 S (1,5кВт, 7А, 220В).

Таблица 1 – Электрические характеристики двигателей

Двигатель Мощность, кВт Об/мин Ток при Δ220/Y380 В КПД, % Коэф. Мощн. IП/IН
АИР 80 А2 1,5 3000 6,2 / 3,6 78,5 0,85 6,5
АИР 80 В4 1500 6,8 / 3,9 78,5 0,80 5,3
АИР 90 L6 1000 7,3 / 4,2 76 0,70 5,0

Двигатель АИР 90 L6 (1000 об/мин) при одинаковой с частотным преобразователем мощности потребляет в номинальном режиме ток 4,2 А при питании 380 В, а преобразователь имеет номинальный выходной ток 4,0 А.

При соединении этого же двигателя в «треугольник» с питанием 220 В номинальный ток составит 7,3А, а преобразователь частоты рассчитан на 7,0А. Следовательно, как при питании 380В, так и при 220В указанный двигатель необходимо подключать к частотному преобразователю мощностью на ступень выше (2,2кВт):

Благодаря частотному преобразователю есть возможность подключать двигатели с «нестандартным» питанием к промышленной сети 220 или 380В. При этом главное, чтобы номинальное напряжение питания двигателя не превышало питание ПЧ, а номинальная частота поддерживалась ПЧ.

Например, машинка для стрижки овец МСУ-200 питается от переменного напряжения 36В частотой 200Гц. Для работы с такой машинкой в настройках преобразователя частоты задается номинальное напряжение питания двигателя — 36В и номинальная частота двигателя — 200Гц.

Несмотря на мощность электродвигателя 115Вт, рабочий ток составляет около 3А. Кроме номинального тока двигателя необходимо учитывать амплитуду, частоту и длительность возможных перегрузок. В моменты перегрузок ток указанной машинки может доходить до 7А.

Частотный преобразователь ELHART EMD-MINI выдерживает перегрузку 150% от номинального тока в течение 60 секунд; EMD-PUMP – 120% в течение 60 секунд.

Следовательно, номинальный ток ПЧ должен быть не менее 7 ÷ 150% = 4,7А. Для подключения к сети 220В выбираем преобразователь частоты ELHART EMD-MINI – 007S (0,75кВт, 5А, 220В). Для подключения к сети 380В выбираем ПЧ ELHART EMD-MINI – 022T (2,2кВт, 5А, 380В).

Обратите внимание: при небольшом запасе по току в данном примере, мощности ПЧ в 6 и 20 раз больше мощности соответствующего двигателя!

Выбор между векторным и вольт-частотным режимом управления

По режиму управления частотные преобразователи можно разделить на вольт-частотные и векторные. Рассмотрим особенности работы этих режимов.

Вольт-частотный (или скалярный) режим управления ПЧ

  • Поддерживает постоянной величину магнитного поля статора при заданной частоте (отношение напряжения питания к частоте постоянно). Это значит, что при различных скоростях номинальный момент на валу двигателя останется неизменным. Есть особенности работы на низких частотах. Подробности расписаны в разделе «Возможный диапазон регулировки частоты вращения двигателя с помощью ПЧ»;
  • Скорость вращения двигателя зависит от приложенной нагрузки: при увеличении нагрузки двигатель замедляется, при уменьшении — ускоряется. При постоянной нагрузке скорость вращения не изменяется;
  • Позволяет работать с несколькими двигателями одновременно (для работы с несколькими двигателями необходимо обеспечить дополнительную защиту по току для каждого двигателя).

Векторный режим управления ПЧ:

  • поддерживает постоянную скорость вращения при изменяющихся нагрузках (за счет автоматической регулировки выходного напряжения);
  • более стабильно работает при низких частотах (за счет компенсации падения напряжения в обмотках двигателя).
Читайте также:  Устройство и принцип работы электрического конвектора

Особенности работы векторного режима:

— возможно изменение скорости вращения при постоянной нагрузке в пределах 2Гц (вследствие поиска оптимального напряжения). Это нормально и не является неисправностью; — возможна работа только с одним двигателем (не поддерживает многодвигательный режим); — работает корректно, если правильно введены паспортные данные двигателя и успешно прошло его автотестирование.

И вольт-частотный и векторный режимы управления при наличии встроенного ПИД-регулятора способны точно поддерживать технологический параметр по датчику обратной связи (скорость, давление, влажность, температуру и другие).

Как правило, для большинства применений достаточно использования вольт-частотного режима. Такими применениями являются насосы, вентиляторы, конвейеры, деревообрабатывающие станки, высокоскоростные шпиндели фрезерных станков, простые куттеры, прессы, упаковочные станки, фасовочные аппараты, дозаторы, компрессоры и другое оборудование.

Векторный режим обычно применяется при работе с подъемно-транспортными механизмами, на дробилках, буровом оборудовании и другими нагрузками, где требуется высокий момент в области низких частот и при запуске, а также нет четкой зависимости момента нагрузки от скорости вращения.

Поддерживаемые способы управления преобразователем частоты

Так как преобразователь частоты обычно устанавливается в шкаф управления, то для доступа к встроенной панели необходимо каждый раз открывать дверь шкафа (в случае работы в пыльном производстве — мука, пыль, цемент — частое открытие двери недопустимо). Кроме того, часто преобразователь устанавливается рядом с двигателем, а пульт оператора находится в стороне.

С помощью выносного пульта управления EMD-Mini — RCP (не входит в комплект поставки) можно реализовать дистанционное управление преобразователем частоты EMD-Mini на расстоянии до 2 метров. Выносной пульт имеет абсолютно те же функции и возможности, что и панель управления на самом частотном преобразователе.

В частотных преобразователях ELHART серии EMD-PUMP встроенный пульт является съемным и имеет возможность выноса с помощью входящего в комплект двухметрового кабеля.

Для дистанционного управления пуском и остановом двигателя с помощью кнопок и переключателей необходимы дискретные входы.

Наличие аналогового входа позволяет дистанционно осуществлять плавную регулировку оборотов с помощью потенциометра или аналогового сигнала 0…10В/4…20мА. Совместно со встроенным ПИД-регулятором аналоговый вход позволяет непрерывно поддерживать значение технологического параметра (давление, расход, температура и т. д.)

Наличие интерфейса RS-485 либо RS-232 позволяет подключиться к верхнему уровню АСУТП.

Программный режим позволяет изменять скорость и направление вращения по заранее заданной программе.

Подбор частотного преобразователя для насоса

Отдельное внимание стоит уделить частотным преобразователям насосной серии. От остальных преобразователей их отличает заложенный алгоритм работы с несколькими двигателями. А именно: чередование двигателей и каскадный режим.

Режим чередования применяется для равномерного износа двигателей. Каскадный режим применяется, когда необходимо с помощью одного частотного регулятора управлять несколькими насосами.

Особенность каскадного режима заключается в том, что частотный преобразователь небольшой мощности способен регулировать производительность или давление в широком диапазоне, включая в работу минимально необходимое количество насосов.

Преобразователи частоты ELHART EMD-PUMP могут управлять группой от 2 до 7 насосов. Возможна работа с насосами разной мощности, в таком случае мощность ПЧ определяется наиболее мощным насосом.

Дополнительное оборудование

В некоторых случаях при использовании преобразователя частоты может потребоваться установка дополнительного оборудования:

  • Тормозной резистор необходим для рассеивания энергии, поступающей в ПЧ от двигателя, который работает в генераторном режиме. Тормозной резистор используется для обеспечения быстрой остановки или замедления двигателя (особенно с высокоинерционными нагрузками), при работе с подъемно-транспортными механизмами (краны, лифты, наклонные транспортеры, подъемники), высокоинерционными применениями (дымососы, центрифуги, рольганги, тягодутьевые механизмы, транспортные тележки), в применениях, где важна точность позиционирования.
  • Моторный дроссель устанавливается при расстоянии между двигателем и преобразователем более 30м; защищает двигатель от импульсных токов, уменьшает помехи, ограничивает амплитуды тока короткого замыкания, снижает скорость нарастания тока КЗ и, как следствие, улучшает защиту преобразователя от КЗ.
  • Сетевой дроссель подключается ко входу преобразователя и является двухсторонним буфером между сетью электроснабжения и преобразователем частоты. Защищает от пиковых скачков напряжения в сети. Установка сетевого дросселя рекомендуется при нестабильных параметрах сети (пульсация, провалы напряжения), при перекосе фаз более 3%, если мощность источника питания (распределительного трансформатора) более 500 кВА и превышает в шесть и более раз мощность преобразователя или если длина кабеля между источником питания и ПЧ менее 10м. Использование сетевых дросселей значительно повышает срок службы и надежность работы частотных преобразователей.

3. Диапазон регулирования скорости вращения двигателя при использовании преобразователя частоты

Использование ПЧ для уменьшения скорости вращения двигателя

Для работы на низких частотах (ниже 10-15 Гц) необходимо особое внимание уделить охлаждению двигателя и моменту на валу.

Электродвигатель закрытого типа с вентиляторным охлаждением (TEFC) имеет охлаждение только за счет встроенного вентилятора. Производительность вентилятора охлаждения уменьшается пропорционально скорости вращения двигателя. При занижении оборотов двигателя эффективность охлаждения снижается, что приводит к перегреву двигателя и возможному выходу из строя.

Существует несколько вариантов охлаждения электродвигателя при работе на низких частотах:

  • сократить период непрерывной работы двигателя на низкой частоте
  • организовать дополнительное охлаждение;
  • уменьшить нагрузку на валу двигателя;
  • установить понижающий редуктор, что позволит повысить обороты двигателя;
  • использовать двигатель большего типоразмера.

Вольт-частотный метод регулирования позволяет сохранять постоянный момент на валу двигателя при различных скоростях. При работе на низких частотах (ниже 5-10 Гц) момент на валу будет зависеть от характеристики конкретного двигателя (активного сопротивления обмоток).

Для сохранения момента на частотах ниже 5-10 Гц может потребоваться корректировка минимального напряжения кривой U / f. Увеличение значения напряжения вызовет увеличение пускового момента, но также приведет к увеличению потребляемого тока, а пропорционально увеличению протекающего тока усиливается нагрев.

Рекомендуемый диапазон регулирования частоты при вольт-частотном управлении: 5-50 Гц. Преобразователь частоты ELHART EMD-MINI поддерживает регулировку частоты от 0,5 до 999,9 Гц.

Векторный метод регулирования способен более точно поддерживать момент при низких частотах (особенно при изменяющейся нагрузке). Диапазон возможной регулировки шире, чем у вольт-частотного режима и зависит от конкретной модели (фирмы, серии) ПЧ. Для векторного управления рекомендовано использовать преобразователи частоты Delta Electronics серии VFD-E и VFD-C.

Для увеличения пускового момента рекомендуется использовать частотный преобразователь большей мощности (так как преобразователь может обеспечить двигатель только полуторократным током (номинальный ток × перегрузочную способность ПЧ).

Использование ПЧ для увеличения скорости вращения двигателя

Преобразователь частоты можно использовать для увеличения скорости вращения двигателя выше номинальной. При этом важно учесть, что при увеличении частоты выше номинальной, момент (Т) уменьшается пропорционально квадрату отношения напряжение/частота.

При частоте f = 70 Гц момент на валу уменьшается в 2 раза T = 0,5 × Tном; при частоте f = 100 Гц момент уменьшается в 4 раза T = 0,25 × Tном. Следовательно, увеличивается риск перегрузки двигателя.

Кроме того, увеличивается нагрузка на подшипники.

Инженер ООО «КИП-Сервис»Рыбчинский М.Ю.

Несколько способов управления однофазным асинхронным двигателем

Преимущества и недостатки различных способов управления асинхронными двигателями. Выводы, сделанные из опыта практического применения.

В настоящее время получили большое распространение асинхронные электродвигатели с короткозамкнутым ротором. Это вызвано тем, что такие машины не имеют щеточного узла, их ротор сделан из алюминия и технологически очень простой, а значит, сама конструкция получается очень надежной. Рассмотрим несколько способов управления однофазным асинхронным электродвигателем.

Конденсаторный однофазный электродвигатель

Наиболее распространенным типом асинхронного однофазного электродвигателя является двигатель с двумя статорной обмотки. Первая и вторая обмотки идентичны по количеству витков, но последовательно с одной из обмоток включают конденсатор. Конденсатор обеспечивает сдвиг фаз между обмотками для образования вращающегося магнитного поля для ротора.

Читайте также:  Электропроводка своими руками

Частотный способ управления

Основным способом управления таким двигателем в настоящее время, является частотный способ. Этот способ реализуется с помощью специальных приборов, называемых ШИМ инверторами.

Эти инверторы, в свою очередь, бывают однофазными и трехфазными, что определяется количеством пар силовых выходов для управления обмотками двигателя.

Для управления однофазным двигателем может быть применен как однофазный, так и трехфазный инвертор.

Управление однофазным ШИМ инвертором

При таком управлении обе обмотки двигателя включены параллельно. Два выхода инвертора подключаются к точкам соединения обмоток.

Инвертор формирует напряжение с разной частотой и с линейной зависимостью напряжение с частотой. Регулировать частоту можно как вниз, так и вверх.

Диапазон регулирования обычно не превышает 1:10, потому что емкость конденсатора в одной из обмоток напрямую зависит от частоты.

преимущества

Основные преимущества этого метода — это простота ввода в эксплуатацию, не требует переделки конструкции двигателя; надежная работа, потому что частотный преобразователь специально разработан для управления такими типами двигателей; хорошие характеристики (ПИД-регулятор, установленные скорости, низкий пусковой ток, защитные функции и т.д.)

  • недостатки
  • К недостаткам относятся: только однонаправленное вращение; более высокая стоимость и дефицит однофазных преобразователей по сравнению с трехфазными, по причине их малого выпуска.
  • Управление трехфазным ШИМ инвертором

В данном случае обмотки двигателя включают последовательно. Выходы трехфазного преобразователя подключают к средней точке и к концам обмоток электродвигателя.

Конденсатор при этом из схемы исключают (требуется некоторая переделка двигателя) Так как обмотки двигателя сдвинуты на 90 градусов, а инвертор дает сдвиг фаз на 120 градусов, то поле Не будет идеально круговым и это отрицательно скажется на параметрах регулирования.

Поле будет пульсирующим. Поскольку порядок коммутации выводов инвертора можно менять программным путем, то легко добиться изменения чередования напряжений на обмотках, следовательно, изменять направление вращения ротора двигателя.

  1. преимущества
  2. К достоинствам следует отнести: доступность на рынке и сравнительно низкую цену; возможность реверсивной работы обычного нереверсивного двигателя; более широкий, чем в однофазного преобразователя диапазон регулирования; возможности программируемых функций как в однофазного инвертора или даже шире за счет большего количества коммутируемых выходов.
  3. недостатки
  4. Недостатки это: пониженный и пульсирующий момент однофазного двигателя; повышенный его нагрева; не все стандартные преобразователи готовы для такой работы, так как некоторые производители прямо запрещают использовать свои изделия в таком режиме.

Несколько способов управления однофазным асинхронным двигателем » Электрика в квартире и доме своими руками

Достоинства и недостатки различных способов управления асинхронными двигателями. Выводы, сделанные по опыту практического применения.

В настоящее время получили большое распространение асинхронные электродвигатели с короткозамкнутым ротором. Это вызвано тем, что такие машины не имеют щеточного узла, их ротор сделан из алюминия и технологически очень прост, а значит, сама конструкция получается очень надежной. Рассмотрим несколько способов управления однофазным асинхронным электродвигателем.

Конденсаторный однофазный электродвигатель

Наиболее распространенным типом асинхронного однофазного электродвигателя является двигатель с двумя статорными обмотками. Первая и вторая обмотки идентичны по количеству витков, но последовательно с одной из обмоток включают конденсатор. Конденсатор обеспечивает сдвиг фаз между обмотками для образования вращающегося магнитного поля для ротора.

Частотный способ управления

Основным способом управления таким двигателем, применяемым в настоящее время, является частотный способ. Этот способ реализуется с помощью специальных приборов, называемых ШИМ инверторами.

Эти инверторы, в свою очередь, бывают однофазными и трехфазными, что определяется количеством пар силовых выходов для управления обмотками двигателя. Для управления однофазным двигателем может быть применен как однофазный, так и трехфазный инвертор.

Пример самодельной конструкции — частотный преобразователь своими руками.

Управление однофазным ШИМ инвертором

При таком управлении обе обмотки двигателя включены параллельно. Два выхода инвертора подключаются к точкам соединения обмоток.

Инвертор формирует напряжение с варируемой частотой и с линейной зависимостью напряжение к частоте. Регулировать частоту можно как вниз, так и вверх. Диапазон регулировки обычно не превышает 1:10, т.к.

емкость конденсатора в одной из обмоток напрямую зависит от частоты.

Достоинства

Основные достоинства этого метода — это простота ввода в эксплуатацию, не требующая переделки конструкции двигателя; надежная работа, т.к. частотный преобразователь специально разработан для управления такими типами двигателей; хорошие характеристики ( ПИД-регулятор, предустановленные скорости, низкий пусковой ток, защитные функции и т.д.)

  • Недостатки
  • К недостаткам относятся: только однонаправленное вращение; более высокая стоимость и дефицит однофазных преобразователей по сравнению с трехфазными, по причине их малого выпуска.
  • Управление трехфазным ШИМ инвертором

В данном случае обмотки двигателя включают последовательно. Выходы трехфазного преобразователя подключают к средней точке и к концам обмоток электродвигателя.

Конденсатор при этом из схемы исключают (требуется некоторая переделка двигателя) Так как обмотки двигателя сдвинуты на 90 градусов, а инвертор дает сдвиг фаз на 120 градусов, то поле не будет идеально круговым и это отрицательно скажется на параметрах регулирования.

Поле будет пульсирующим. Так как порядок коммутации выводов инвертора можно менять программным путем, то легко добиться изменения чередования напряжений на обмотках, следовательно, менять направление вращения ротора двигателя.

  1. Достоинства
  2. К достоинствам следует отнести: доступность на рынке и сравнительно низкую цену; возможность реверсивной работы обычного нереверсивного двигателя; более широкий, чем у однофазного преобразователя диапазон регулировки; возможности программируемых функций как у однофазного инвертора или даже шире за счет большего количества коммутируемых выходов.
  3. Недостатки

Недостатки это: пониженный и пульсирующий момент однофазного двигателя; повышенный его нагрев; не все стандартные преобразователи готовы для такой работы, т.к. некоторые производители прямо запрещают использовать свои изделия в таком режиме.

Фазовое управление с помощью симисторного регулятора ( диммера)

Этот метод самый «древний», он обусловлен отсутствием до недавнего времени в широкой продаже частотных регуляторов и их относительно высокой ценой. При таком управлении обмотки двигателя остаются включенными параллельно. Одна из обмоток включена последовательно с фазосдвигающим конденсатором. К точкам параллельного соединения обмоток подключается симисторный регулятор.

На выходе этого регулятора формируется однофазное напряжение с постоянной частотой (50 Гц) и регулируемым среднеквадратическим значением. Это происходит за счет регулирования напряжения открывания симистора, т.е. изменяется время открытого состояния симистора за период следования сетевого напряжения.

  • Момент на валу двигателя, при таком регулировании, будет снижаться пропорционально напряжению, критическое скольжение будет неизменным.
  • Достоинства
  • Основные достоинства: исключительная простота устройства управления; возможность собрать и починить такое устройство любым радиолюбителем; на порядок или даже несколько порядков более низкая цена по сравнению с частотными приводами.
  • Недостатки

Основные недостатки это: регулирование оборотов только на понижение; диапазон регулирования только 2:1; стабильность скорости только удовлетворительная; допустимая нагрузка резко снижается с уменьшением скорости; перегрев двигателя на низких скоростях, т.к. не хватает производительности встроенного вентилятора двигателя; необходимость завышения мощности двигателя.

Выводы

Исходя из всего вышеперечисленного, необходимо настоятельно рекомендовать применение частотных приводов для управления асинхронными двигателями. Такие приводы (ШИМ инверторы) кроме несомненных удобств по управлению, позволяют получить высокий КПД установок и добиться роста коэффициента мощности (cos фи) до 0.98, т.е. реализовать программу энергосбережения.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock
detector