Атмосферное электричество, как новый источник альтернативной энергии

Атмосферное электричество, как новый источник альтернативной энергии

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов.

Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.

Атмосферное электричество, как новый источник альтернативной энергии

Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна.

Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза.

Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза.

Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо.

Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов.

Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге.

Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.

Атмосферное электричество, как новый источник альтернативной энергии

«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России.

 Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой.

Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу. 

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо».

По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин.

За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.

Атмосферное электричество, как новый источник альтернативной энергии

Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор.

Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.

Атмосферное электричество, как новый источник альтернативной энергии

Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон.

Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока.

При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа – во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.

Атмосферное электричество, как новый источник альтернативной энергии

Энергия из тепла человека

Принцип термоэлектрических генераторов, работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Такой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.

Атмосферное электричество, как новый источник альтернативной энергии

Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.

Атмосферное электричество, как новый источник альтернативной энергии

Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства. 

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB.

 Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов.

Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии.

Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.

Атмосферное электричество, как новый источник альтернативной энергии

Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод, загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Читайте также:  Мультиметр для "чайников": базовые принципы проведения измерений мультиметром

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала – не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.

Атмосферное электричество, как новый источник альтернативной энергии

«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны.

Электроны направляются через внешнюю цепь для выработки электроэнергии.

 Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало – его хватает лишь на питание небольших портативных гаджетов.

Смотреть далее: 10 самых красивых ветряных электростанций мира

Альтернативные источники энергии: виды и использование

Атмосферное электричество, как новый источник альтернативной энергии

В связи с развитием производственных технологий и значительным ухудшением экологической ситуации во многих регионах земного шара, человечество столкнулось с проблемой поиска новых источников энергии.

С одной стороны, количество добываемой энергии должно быть достаточным для развития производства, науки и коммунально-бытовой сферы, с другой стороны, добыча энергии не должна отрицательно сказываться на окружающей среде.

Данная постановка вопроса привела к поиску так называемых альтернативных источников энергии — источников, соответствующих вышеуказанным требованиям. Усилиями мировой науки было обнаружено множество таких источников, на данный момент большинство из них уже используется более или менее широко. Предлагаем вашему вниманию их краткий обзор:

Солнечная энергия

Атмосферное электричество, как новый источник альтернативной энергии

Солнечные электростанции активно используются более чем в 80 странах, они преобразуют солнечную энергию в электрическую.

Существуют разные способы такого преобразования и, соответственно, различные типы солнечных электростанций.

Наиболее распространены станции, использующие фотоэлектрические преобразователи (фотоэлементы), объединенные в солнечные батареи. Большинство крупнейших фотоэлектрических установок мира находятся в США.

Энергия ветра

Атмосферное электричество, как новый источник альтернативной энергии

Ветроэнергетические установки (ветряные электростанции) широко используются в США, Китае, Индии, а также в некоторых западноевропейских странах (например в Дании, где 25% всей электроэнергии добывают именно таким способом). Ветроэнергетика является весьма перспективным источником альтернативной энергии, в настоящее время многие страны значительно расширяют использование электростанций данного типа.

Биотопливо

Атмосферное электричество, как новый источник альтернативной энергии

Главными преимуществами данного источника энергии перед другими видами топлива являются его экологичность и возобновляемость.

К альтернативным источникам энергии относятся не все виды биотоплива: традиционные дрова тоже являются биотопливом, но не являются альтернативным источником энергии.

Альтернативное биотопливо бывает твердым (торф, отходы деревообработки и сельского хозяйства), жидким (биодизель и биомазут, а также метанол, этанол, бутанол) и газообразное (водород, метан, биогаз).

Энергия приливов и волн

Атмосферное электричество, как новый источник альтернативной энергии

В отличие от традиционной гидроэнергетики, использующей энергию водного потока, альтернативная гидроэнергетика пока не получила широкого распространения.

К главным минусам приливных электростанций относятся высокая стоимость их строительства и суточные изменения мощности, их за которых электростанции этого типа целесообразно использовать только в составе энергосистем, использующих также и другие источники энергии. Основные плюсы — высокая экологичность и низкая себестоимость получения энергии.

Тепловая энергия Земли

Атмосферное электричество, как новый источник альтернативной энергии

Для разработки этого источника энергии используются геотермальные электростанции, использующие энергию высокотемпературных грунтовых вод, а также вулканов.

На данный момент более распространенной является гидротермальная энергетика, использующая энергию горячих подземных источников.

Петротермальная энергетика, основанная на использовании «сухого» тепла земных недр, на данный момент развита слабо; основной проблемой считается низкая рентабельность данного способа получения энергии.

Атмосферное электричество

Атмосферное электричество, как новый источник альтернативной энергии

(Вспышки молний на поверхности Земли происходят практически одновременно в самых разных местах планеты)

Грозовая энергетика, основывающаяся на захвате и накоплении энергии молний, пока находится в стадии становления. Главными проблемами грозовой энергетики являются подвижность грозовых фронтов, а также быстрота атмосферных электрических разрядов (молний), затрудняющая накопление их энергии.

Получить электричество из воздуха сможет генератор Air-gen

Атмосферное электричество, как новый источник альтернативной энергии

Ученые из Университета Массачусетса в Амхерсте разработали технологию, позволяющую вырабатывать электричество из атмосферной влаги с помощью природного белка. Это изобретение может сыграть значительную роль в развитии возобновляемой энергии, повлиять на процессы изменения климата и найти применение в медицине будущего.

Устройство, названное создателями Air-gen («работающий от воздуха генератор»), содержит токопроводящие белковые нановолокна, которые производит микроорганизм геобактер. Взаимодействие электродов и белковых нанопроводов аналогично тому, как электрический ток вырабатывается из испарений воды, содержащихся в атмосфере.

«Мы буквально создаем электричество из ничего, — объясняет изобретатель устройства Цзюнь Яо. — Air-gen вырабатывает чистую энергию в режиме 24/7. Это самый удивительный и вдохновляющий способ использования белковых наносетей из всех нам известных».

Действительно, технология абсолютно экологически чистая, возобновляемая и очень малозатратная. Ее можно применять даже в регионах с экстремально сухим климатом, вплоть до пустыни Сахара.

Главное преимущество Air-gen перед другими формами «зеленой» энергии состоит в том, что устройство не зависит от наличия солнца или ветра и может работать даже в помещении.

Все, что нужно для его функционирования, – это тонкая пленка из белковых нановолокон толщиной менее 10 микронов.

На первом этапе генератор Air-gen способен питать небольшие электронные устройстваПленка нанесена на один электрод, тогда как другой, маленький электрод расположен поверх материала.

Белковая наносетка впитывает влагу из атмосферы, а сочетание ее химических свойств, электрической проводимости с порами между нанофрагментами создает условия для появления электрического тока между двумя электродами.

По словам изобретателей, мощности Air-gen сейчас хватит только для питания мелкой электроники, но вскоре она станет пригодна для коммерческого запуска.

Тогда «панели» Air-gen найдут применение и заменят собой батарейки в мелких портативных устройствах, от смарт-часов до медицинских мониторов.

Вполне возможно, что благодаря ему можно будет отказаться от привычной подзарядки сотовых телефонов.

«Конечная цель — создание крупномасштабных систем. Например, технология может быть включена в краску для стен, которая обеспечит энергией ваш дом. Или мы можем разработать портативные воздушные генераторы, которые производят электричество в местах без доступа к сети», — говорит Яо.

В дополнение к Air-gen лаборатория Яо разработала несколько других приложений с белковыми нанопроводами. По словам ученых, их открытие знаменует начало новой эры электронных устройств на основе белка.

Ученые заявили об опасности возобновляемых источников энергии для биоразнообразия

На «цифровую экономику» приходится примерно десятая часть глобального потребления энергии, но эта доля возрастает.

Например, пару лет назад майнинг криптовалют был уделом гиков, а сейчас это направление в глобальном масштабе потребляет больше энергии, чем многие страны.

Например, майнинг Bitcoin «съедает» за год 14,6 ТВт*ч, а потребление Таджикистана pа год составляет всего лишь 13 ТВт*ч, по данным DigiEconomist, а ведь есть еще и другие криптовалюты, например, на майнинг Ethereum за год уходит около 5 ТВт*ч[1].

Миру нужно больше энергии, причем, по возможности, за меньшие деньги. Чтобы обеспечить растущие глобальные запросы, энергетике нужны качественные изменения. Использование восстанавливаемых источников энергии (ВИЭ), децентрализация генерации и широкое внедрение «умных сетей» (smart grid) приведут к радикальному снижению стоимости электроэнергии.

Восстанавливаемые источники

Использование восстанавливаемых источников энергии общественное мнение чаще всего рассматривает в контексте «зеленой энергетики», которая в процессе работы минимально влияет на окружающую среду, и считает это весьма инновационным направлением, которое появилось совсем недавно. Однако, это не совсем верно.

Классическим примером генерирующих мощностей, использующих ВИЭ, являются гидроэлектростанции, которые по всему миру строят более века.

Ветряные, приливные, солнечные, геотермальные и другие электростанции на ВИЭ также разработаны многие десятилетия назад, причем в основу таких решений могут быть положены самые разные технологические подходы.

Например, солнечные могут быть оснащены полупроводниковыми панелями, которые напрямую «конвертируют» свет в электричество, а могут представлять собой систему зеркал, которые фокусируют свет на резервуаре и нагревают содержащуюся там жидкость, которая крутит турбину. Вариаций приливных электростанций тоже множество.

ВИЭ-решения, принципы действия которых разработаны десятилетия назад, создают с использованием новых материалов и современных инженерных подходов, благодаря чему станции обходятся дешевле и становятся более эффективными.

На примере солнечных батарей, в совершенствование которых вложены астрономические средства, такое развитие наиболее заметно, но для увеличения эффективности соответствующих решений есть и другие подходы.

Например, в Южной Корее будет построена плавающая солнечная электростанция, батареи которой будут поворотными, чтобы в течение всего дня сохранять оптимальную ориентацию на Солнце.

По заявлению компании Solkiss, которая уже испытала прототипы, такой простой подход новому решению позволит увеличить выработку солнечной энергии на 22% по сравнению с наземными электростанциями, использующими стационарные батареи.

Размещение батарей на водной поверхности упрощает изменение ориентации панелей, аналогичное решение можно создать и наземное, только оно окажется сложнее и дороже. Напомним, что размещение панелей на воде позволяет избежать нагрева, который сильно уменьшает эффективность солнечных батарей. Как видно, для получения существенного прироста эффективности не понадобилось открывать новые физические эффекты, создавать новые технологии производства полупроводниковых панелей и т.д., а достаточно оказалось традиционных инженерных подходов. Подобных примеров много, внимание инженеров привлечено к «зеленым электростанциям», поэтому изящные решения для этих систем создают десятками.

Доля ВИЭ в общем балансе мирового потребления невелика — немногим более пяти процентов — но она растет и будет расти, причем очень быстро.

Читайте также:  Популярные типы аккумуляторных батарей

Интересно, что «зеленость» электростанций, работающих на ВИ, для бизнеса глубоко вторична.

Да, они действительно экологически чисты, но и современные тепловые и атомные станции достаточно экологичны при современном уровне развития очистных сооружений и систем безопасности.

Направления альтернативной энергетики

Ветроэнергетика

Солнечная энергетика

  • Солнечная энергетика (рынок России)
  • Солнечная энергетика (мировой рынок)

Электричество испарением воды

Испарение — это процесс, с помощью которого вещество переходит из жидкого состояния в газообразное. Как правило, испарение является следствием нагревания вещества до определенной температуры.

Именно благодаря испарению на Земле поддерживается круговорот воды, и испарителем в данном случае выступает Солнце.

Масштабы энергии, которая тратится на процесс испарения по всей планете, на самом деле весьма велики, хоть мы в повседневной жизни и не замечаем этого[2].

По словам Озгура Сахина (Ozgur Sahin) и его коллег из Колумбийского университета, вода, которая испаряется из всех рек, озер и плотин на территории современных США (за исключением Великих озер) может обеспечить до 2,85 миллиона мегаватт-часов электроэнергии в год. Для сравнения, это эквивалентно двум третьим электроэнергии, произведенной во всех штатах США за 2015 год! И это при том, что в 15 из 47 штатов потенциальная мощность электростанций превышает реальный спрос на энергию.

Атмосферное электричество, как новый источник альтернативной энергии

Двигатели будущего: все дело в воде

Исследователи предлагают установить на пресноводных водоемах двигатели[3], которые не только вырабатывали бы электроэнергию, но и вдвое уменьшили бы интенсивность самого испарения, что во многих ситуациях позволило бы сохранить огромные запасы питьевой воды.

Однако подобная технология предполагает, что водный массив будет накрыт поглощающими панелями — что крайне нежелательно.

Для начала, впрочем, необходимо построить сам испарительный двигатель, но здесь ученые уже продемонстрировали всю мощь науки и создали несколько миниатюрных, но вполне рабочих прототипов установки.

Тестовые двигатели основаны на материалах, которые при высыхании сжимаются — к примеру, в конструкции задействована лента, покрытая бактериальными спорами. Теряя воду, споры ссыхаются и сжимаются, сокращая при этом ленту.

Сахин сравнивает принцип работы этой конструкции с мышечной системой, поясняя, что микроскопические споры могут натягивать ленту с довольно большой силой.

Чтобы избежать загрязнения почвы из-за многократного вымачивания и обилия химических веществ, прототипы регулируют свою работу в зависимости от изменения общего уровня влажности. К примеру, в одной из версий двигателя «мышца» расположена чуть выше водного слоя.

Когда испаряющаяся влага поднимается вверх, то ленты, натянутые по принципу жалюзи, расправляются и создают щели, благодаря которым в них поступает воздух и помогает лентам снова высохнуть и избежать переувлажнения.

Достоинства и недостатки изобретения

Научное сообщество согласно с тем, что потенциал этого изобретения огромен. На сегодняшний день основные проблемы заключаются в его использовании.

Кен Калдейра из Института Карнеги по науке в Стэнфорде, штат Калифорния, сомневается, что можно эффективно преобразовать энергию испарения в электрическую энергию.

По его мнению, промышленная разработка двигателей в той степени, когда их производство станет массовым, а использование — повсеместным, является чрезвычайно трудоемкой задачей.

Основным конкурентом новых двигателей выступают хорошо знакомые всем солнечные батареи, поскольку все более распространенным явлением для плавучих солнечных ферм является их размещение на водохранилищах. Однако испарительные двигатели могут быть изготовлены из дешевых биоматериалов, которые легче утилизировать, чем солнечные батареи — а это немаловажно.

Если технология получит распространение, то ее использование повлияет и на локальный климат за счет изменения степени испарения воды. Но это будет иметь хоть какое-то значение лишь в том случае, если площадь закрытой поверхности составит 250 000 км2 и более.

Впрочем, когда речь идет о таких масштабах, то любая энергетическая установка, какой бы экологически чистой она не была, будет оказывать воздействие на окружающую среду.

Более того, в дождливых районах, где частые осадки вызывают множество проблем, снижение интенсивности испарения воды будет крайне полезным.

«Дождевые батареи»

В мире появятся не только солнечные, но и «дождевые батареи». В феврале 2020 года стало известно о разработке способа получения электричества благодаря падению дождевой воды, который позволяет увеличить энергоэффективность процесса в тысячи раз. Первый электрогенератор на основе новой технологии могут создать через пять лет[4].

Группа ученых сразу из нескольких научных организаций Китая и США разработала принципиально новый способ получения электричества с помощью падения дождевой воды на поверхность. Об этом пишет РИА Новости со ссылкой на научную статью в журнале Nature. Этот способ позволяет увеличить мощность подобных установок в тысячи раз по сравнению с существующими прототипами.

«Наше исследование показывает, что капля объемом 100 микролитров воды, падающая с высоты 15 сантиметров, может генерировать напряжение свыше 140 вольт. А за счет ее мощности могут питаться 100 небольших светодиодных ламп», — приводятся в пресс-релизе слова руководителя научной группы Ван Цуанкая из Городского университета Гонконга.

Скачкообразного роста мощности подобных генераторов удалось добиться благодаря идее накрыть их специальной пленкой из политетрафторэтилена (ПТФЭ).

Она способна накапливать поверхностный заряд при непрерывном попадании капель воды, пока он не достигнет насыщения.

В подобном устройстве капли действуют как резисторы, а поверхностное покрытие — как конденсатор, отмечается в публикации агентства.

Первый прототип «дождевого» электрогенератора для практического применения будет создан в ближайшие пять лет, считают в научной группе.

Если его испытания завершатся успехом, в мире могут появиться аналоги солнечных батарей для использования в условиях сильного дождя. Например — инновационные зонты с функцией зарядки телефонов.

Или «дождевые батареи», рассчитанные на применение в отдельных регионах в период сезона сильных дождей.

Что интересно, в уникальном научном исследовании были задействованы сразу 13 ученых из пяти научных организаций. Помимо Городского университета Гонконга это университет Небраски-Линкольна в США, Университет науки и технологий КНР, Университет электронных наук и технологий Китая, а также Институт наноэнергии и наносистем пекинского отделения Китайской академии наук.

«Зеленые» проблемы

Электростанции на ВИЭ работают нестабильно. По понятной причине в темное время суток солнечные электростанции не генерируют электричество, построенные на других принципах «зеленые» решения в большинстве случаев также сильно зависят от капризов погоды: например, наступает штиль — ветряные электростанции простаивают, а мощность волновых падает на порядки.

Сезонные явления тоже способны существенно изменить эффективность ВИ-станций по причинам, известным из школьного курса природоведения и физической географии. В зимнее время уменьшается световой день, становится меньше ясных дней и солнце ниже над горизонтом — и выработка электричества солнечными батареями снижается не на проценты, а в разы.

Это означает, что «зеленые электростанции» будут эксплуатировать параллельно с генерирующими объектами традиционной энергетики.

Получаемый синтез обеспечивает снижение цены электричества при сохранении стабильности энергопитания.

Но для смягчения ситуации, вызываемой нестабильностью электростанций на ВИЭ все чаще используют и другие решения. Ситуацию могут несколько смягчить энергонакопители.

Энергонакопители — от насосов до аккумуляторов

Хранение энергии: что, как и почему

Атмосферное электричество, как новый источник альтернативной энергии Peter Miller

Эта последняя попытка выжить наверняка провалится, так как технологии накопления энергии готовы нанести последний удар – возможность накапливать и сохранять энергию в течение длительного времени. В этой статье мы рассмотрим различные способы хранения энергии и узнаем, как их конкурентные преимущества могут повлиять на мировые энергетические системы.

Технологии накопления энергии сохраняют энергию, когда потребление ниже, чем ее производство, и снабжают энергией, когда потребление выше, чем ее производство.

Это обеспечивает энергетическую безопасность и готовность к чрезвычайным ситуациям, например в случае аварии на электростанции; дает возможность балансировать нагрузки сети, где электричество генерируется с помощью возобновляемой энергии.

Системы хранения энергии полезны и для потребителей – благодаря им возможно поддерживать стабильные цены на электроэнергию в масштабе общей сети или обеспечить индивидуальную гибкость и независимость потребления при локальном хранении в домах.

Основы

Широкое внедрение технологий хранения энергии служит «мостом» к переходу на генерацию электричества из возобновляемых источников. У ВИЭ есть один всем известный недостаток – они могут производить энергию только в течение определенных периодов при определенных условиях, поэтому мы не можем увеличивать или уменьшать количество произведенных киловатт по желанию.

ВИЭ способны производить энергию только тогда, когда для этого есть условия – дует ветер или светит солнце. И это может совпадать или не совпадать по времени с нуждами потребителей.

При этом мы можем заранее предсказать, когда ВИЭ будут наиболее эффективно вырабатывать энергию: мы знаем, когда солнце встает и садится; мы можем получать довольно точный прогноз погоды; мы знаем, что зимой ветер сильнее, чем летом, что приливы меняются в зависимости от сезона и так далее.

Читайте также:  Электробезопасный частный жилой дом и дача. часть 2

Однако чтобы полностью реализовать свой потенциал, такие источники энергии нуждаются в системах накопления.

Если мы сможем накапливать и хранить долгое время энергию от ВИЭ, мы сможем компенсировать тот факт, что они не производят энергию постоянно с одинаковой мощностью или именно в те периоды, когда это нужно потребителям.

Таким образом, это снизит потребность в работе угольных или газовых установок для компенсации пиковых нагрузок.

Обработка пикового спроса

Основная проблема электричества состоит в том, что его производство должно соответствовать потреблению, которое может быстро и сильно меняться. Системы хранения энергии могут помочь справиться с так называемыми пиковыми часами потребления электроэнергии.

Классический пример – проблема британской национальной сети, связанная с чайной культурой.

Рано утром, когда люди завтракают, энергосистема должна быть готова к тому, что целая нация одновременно включает электрочайники.

Миллионы кипящих чайников создают нагрузку на сеть, и электростанциям надо поставить существенно больше электричества в течение этих нескольких часов, нежели это было необходимо всего пару часов назад.

Запас энергии в системах хранения облегчил бы обработку таких пиковых часов.

Было бы возможно накапливать энергию не только от ВИЭ, но и от других источников в периоды, когда производство больше, чем потребление.

Это позволило бы поддерживать стабильность производства даже во время пикового спроса, полагаясь на накопленную энергию для покрытия возросшего потребления в течение коротких периодов.

Энергетическая безопасность

Ни один источник энергии не гарантирует непрерывную постоянную работу. Зачастую «ненадежные» ВИЭ сравнивают с «надежными» угольными и атомными электростанциями, которые можно включать и выключать при необходимости.

Но при этом не учитывается тот факт, что все электростанции время от времени нужно выводить из эксплуатации для технического обслуживания.

Не всегда это можно спланировать заранее, поэтому централизованное производство электроэнергии не обеспечивает энергетическую безопасность на сто процентов.

Использование множества различных источников энергии и децентрализация производства повысит энергетическую безопасность, поскольку выход из строя небольшой установки не окажет существенного влияния на работоспособность сети. Кроме того, повышению энергетической безопасности способствует использование технологий хранения энергии.

Системы накопления энергии могут принимать различные формы. Разные технологии имеют свои сильные и слабые стороны, поэтому наиболее вероятным решением в будущем, скорее всего, будет их комбинация.

Рассмотрим некоторые из существующих альтернатив.

Гидроэнергетика – классика

Хотя говорить о накоплении энергии стало модным только в последние несколько лет, человечество знало эти технологии и раньше. В настоящее время самой крупной формой хранения энергии является гидроэлектростанция.

Плотины образуют большие водоемы за счет естественных процессов, таких как течение рек, осадки и таяние льда весной.

Затем они работают как заряженная батарея: спускаемый через плотину контролируемый поток воды благодаря силе гравитации приводит в движение турбины и производит электричество.

ГЭС такого типа очень полезны для балансировки нагрузки на сеть, поскольку их мощность можно быстро регулировать – при условии, что в водохранилищах достаточно воды. Это условие открывает уязвимость технологии, которая, возможно, будет еще более уязвима из-за меняющегося климата.

Наполненность резервуаров гидроэлектростанций зависит от погодных условий в каждом конкретном году. Многие заполняются весной, а затем используются в течение всего года.

Если погодные условия не обеспечивают достаточный приток воды, это может стать проблемой для регионов, где гидроэнергетика составляет основу их энергетического баланса.

При этом плотинные ГЭС имеют свои экологические недостатки. Плотина преграждает естественное русло реки, препятствуя тем самым свободному продвижению рыб и речных животных. Кроме того, создание водохранилища предусматривает затопление обширной территории, а зачастую это плодородные почвы вокруг русла реки.

Гидроаккумулирующие станции – энергия для энергии

Альтернативой плотинным ГЭС может быть гидроаккумулирующая электростанция, на которой избыточная мощность в непиковое время используется для закачивания воды в резервуар, находящийся на возвышенности, для создания задела для выработки энергии в пиковое время. Хотя в процессе и происходит потеря энергии, для устойчивости энергосистемы такой способ накопления вполне эффективен.

При этом важно учитывать, откуда берется избыточная энергия для заполнения резервуаров. Если это результат работы угольной электростанции, то вряд ли такую систему можно считать экологически устойчивой.

Но если избыточная энергия будет производиться под воздействием силы ветра или энергии солнца – а с ростом использования ВИЭ мы обязательно этого дождемся, – то строительство ГАЭС вполне можно назвать экономически и экологически эффективным.

Аккумуляторы – лучший друг ВИЭ

Аккумуляторные батареи являются важной частью современных систем накопления энергии. Они могут использоваться как в пределах одного дома, так и в национальной электросети. По видам их часто подразделяют на сетевые, локальные и виртуальные.

Национальные или региональные энергосистемы потребуют строительства крупных парков батарей, которые смогут балансировать нагрузки и обеспечивать бесперебойное функционирование энергосистемы в зависимости от нужд потребителей.

Батареи можно эффективно использовать и локально.

С ростом популярности индивидуальных солнечных панелей, размещаемых на крышах частных домов, повышается и спрос на батареи, поскольку владельцы домов хотят лучше контролировать свою локальную энергосеть.

С помощью аккумуляторов они могут сохранять энергию, вырабатываемую солнечными батареями, для собственного использования или для продажи ее в пиковые часы в общую сеть, когда цена на электроэнергию возрастает.

Локальное использование батарей может позитивно отразиться и на стабильности крупных энергосистем, если у них будет доступ к электроэнергии, хранящейся у частных владельцев. Тогда они смогут покупать хранящуюся локально энергию для покрытия пиковых нагрузок.

Дополнительным плюсом к возможности локального накопления энергии является то, что это позволяет использовать ВИЭ для автономного энергоснабжения в удаленных местах без подключения к централизованной электросети.

Таким образом, те, кто имеет дачу вдалеке от линий электропередачи, могут полагаться на энергию от ВИЭ и хранить ее в батареях, а не использовать дизельные генераторы для удовлетворения своих потребностей, когда производительность ВИЭ снижается.

По данным Международного агентства по возобновляемой энергетике (IRENA), объем стационарного хранения энергии в батареях к 2030 году увеличится в 17 раз по сравнению с 2017 годом.

Еще одна интересная перспектива – виртуальные батареи. Взять, к примеру, электромобили – это, по сути, аккумуляторы меньшего размера, перемещающиеся по городу. Когда они припаркованы (дома или на работе) и подключены для зарядки, появляется возможность управлять ими как источником энергии для системы в целом.

Если в сети существует локальный дисбаланс, агрегатор может перенаправить поток энергии от батарей. Для одной батареи изменения будут совсем незначительными, но при возможности одновременного управления большим их количеством дисбаланс в сети легко можно компенсировать.

Это повысит эффективность и надежность сети, и это очень интересная перспектива для полностью электрифицированного общества.

Одна из основных проблем при использовании батарей на транспорте – их невысокая плотность энергии, то есть соотношение количества энергии, которое они могут хранить, с их размером и весом. Для больших перевозок необходимое количество аккумуляторов слишком велико, чтобы оправдать вес. Таким образом, чтобы уйти от ископаемого топлива на транспорте, нужны другие решения.

Водород – на смену ископаемому топливу

Еще один способ хранения энергии – использовать ее для производства водорода путем электролиза и хранить его в сжиженном виде. В таком виде водород можно использовать в качестве топлива для двигателей внутреннего сгорания или других установок в любое время.

Производство водорода намного менее эффективно, чем использование аккумуляторов, и примерно соответствует эффективности ископаемого топлива. Тем не менее перспективы использования водорода связаны, прежде всего, с крупным транспортом.

Он может быть использован для питания больших транспортных средств, таких как круизные лайнеры, грузовые суда, поезда и прицепы, которые в противном случае работали бы на газе или даже на мазуте.

Кроме того, водородом можно частично заменить природный газ в уже существующей энергетической инфраструктуре, тем самым уменьшив выбросы CO2.

Водород можно назвать идеальной топливной альтернативой батареям, поскольку при сжигании этого вещества нет никаких вредных выбросов – единственными выбросами являются вода и тепло.

Аммиак – транспортируемый водород

Недостаток водорода заключается в том, что при комнатной температуре и нормальном атмосферном давлении – это газ, и для эффективной транспортировки его необходимо сжать до сжиженного состояния и поддерживать условия для его сохранения в таком состоянии на всем пути. Поэтому перевозка водорода – дорогостоящее удовольствие.

BELLONA в Норвегии вместе с учеными изучает альтернативные носители водорода, то есть вещества, которые частично состоят из водорода и при этом легче транспортируются. Один из лучших кандидатов на эту роль – аммиак.

При комнатной температуре и нормальном атмосферном давлении аммиак находится в жидком состоянии, поэтому его легко перевозить на большие расстояния.

Превращение водорода в аммиак вызывает дополнительные потери энергии, но это с лихвой компенсируется менее энергоемкой транспортировкой.

В отличие от водорода производство аммиака широко распространено и его поставки налажены по всему миру. Но, с другой стороны, аммиак ядовит, а водород безвреден.

Потенциальная утечка, например при транспортировке аммиака по морю, может иметь негативные последствия для окружающей среды.

Тем не менее комбинация производства водорода и аммиака в качестве носителя водорода может быть неплохой альтернативой.

Аккумулирование электроэнергии не является чем-то новым для человечества – мы практикуем накопление энергии уже больше ста лет.

Новым можно считать современные технологии, которые открывают нам широкий диапазон энергоносителей, будь то водород или аккумуляторы.

Эти технологии не зависят от природных явлений или климата, как, например, водохранилища, и смогут стимулировать повсеместное использование возобновляемых источников энергии.

  • Статья подготовлена специально для 74 номера издаваемого «БЕЛЛОНОЙ» журнала «Экология и право».
  • Авторы:
  • Кристиан Эриксон, специалист по вопросам энергетики, международное объединение BELLONA
  • Оскар Ньо, специалист по проектам в России, международное объединение BELLONA

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock
detector