Характеристики диодов, конструкции и особенности применения

Диод – электронный прибор с двумя (иногда тремя) электродами, обладающий односторонней проводимостью. Электрод, подключенный к положительному полюсу прибора, называют анодом, к отрицательному – катодом.

Если к прибору приложено прямое напряжение, то он находится в открытом состоянии, при котором сопротивление мало, а ток протекает беспрепятственно. Если прикладывается обратное напряжение, прибор, благодаря высокому сопротивлению, является закрытым.

Обратный ток присутствует, но он настолько мал, что условно принимается равным нулю.

Содержание статьи

Диоды делятся на большие группы – неполупроводниковые и полупроводниковые.

Неполупроводниковые

Одной из наиболее давних разновидностей являются ламповые (электровакуумные) диоды. Они представляют собой радиолампы с двумя электродами, один из которых нагревается нитью накала. В открытом состоянии с поверхности нагреваемого катода заряды движутся к аноду. При противоположном направлении поля прибор переходит в закрытую позицию и ток практически не пропускает.

Еще одни вид неполупроводниковых приборов – газонаполненные, из которых сегодня используются только модели с дуговым разрядом. Газотроны (приборы с термокатодами) наполняются инертными газами, ртутными парами или парами других металлов. Специальные оксидные аноды, используемые в газонаполненных диодах, способны выдерживать высокие нагрузки по току.

Полупроводниковые

В основе полупроводниковых приборов лежит принцип p-n перехода. Существует два типа полупроводников – p-типа и n-типа. Для полупроводников p-типа характерен избыток положительных зарядов, n-типа – избыток отрицательных зарядов (электронов).

Если полупроводники этих двух типов находятся рядом, то возле разделяющей их границы располагаются две узкие заряженные области, которые называются p-n переходом. Такой прибор с двумя типами полупроводников с разной примесной проводимостью (или полупроводника и металла) и p-n-переходом называется полупроводниковым диодом.

Именно полупроводниковые диодные устройства наиболее востребованы в современных аппаратах различного назначения. Для разных областей применения разработано множество модификаций таких приборов.

Характеристики диодов, конструкции и особенности применения

Полупроводниковые диоды

Виды диодов по размеру перехода

По размерам и характеру p-n перехода различают три вида приборов – плоскостные, точечные и микросплавные.

Плоскостные детали представляют одну полупроводниковую пластину, в которой имеются две области с различной примесной проводимостью. Наиболее популярны изделия из германия и кремния.

Преимущества таких моделей – возможность эксплуатации при значительных прямых токах, в условиях высокой влажности. Из-за высокой барьерной емкости они могут работать только с низкими частотами.

Их главные области применения – выпрямители переменного тока, устанавливаемые в блоках питания. Эти модели называются выпрямительными.

Точечные диоды имеют крайне малую площадь p-n перехода и приспособлены для работы с малыми токами. Называются высокочастотными, поскольку используются в основном для преобразования модулированных колебаний значительной частоты.

Микросплавные модели получают путем сплавления монокристаллов полупроводников p-типа и n-типа. По принципу действия такие приборы – плоскостные, но по характеристикам они аналогичны точечным.

Материалы для изготовления диодов

При производстве диодов используются кремний, германий, арсенид галлия, фосфид индия, селен. Наиболее распространенными являются первые три материала.

Очищенный кремний – относительно недорогой и простой в обработке материал, имеющий наиболее широкое распространение. Кремниевые диоды являются прекрасными моделями общего назначения. Их напряжение смещения – 0,7 В.

В германиевых диодах эта величина составляет 0,3 В. Германий – более редкий и дорогой материал.

Поэтому германиевые приборы используются в тех случаях, когда кремниевые устройства не могут эффективно справиться с технической задачей, например в маломощных и прецизионных электроцепях.

Виды диодов по частотному диапазону

По рабочей частоте диоды делятся на:

  • Низкочастотные – до 1 кГц.
  • Высокочастотные и сверхвысокочастотные – до 600 мГц. На таких частотах в основном используются устройства точечного исполнения. Емкость перехода должна быть невысокой – не более 1-2 пФ. Эффективны в широком диапазоне частот, в том числе низкочастотном, поэтому являются универсальными.
  • Импульсные диоды используются в цепях, в которых принципиальным фактором является высокое быстродействие. По технологии изготовления такие модели разделяют на точечные, сплавные, сварные, диффузные.

Области применения диодов

Современные производители предлагают широкий ассортимент диодов, адаптированных для конкретных областей применения.

Выпрямительные диоды

Эти устройства служат для выпрямления синусоиды переменного тока. Их принцип действия основывается на свойстве устройства переходить в закрытое состояние при обратном смещении.

В результате работы диодного прибора происходит срезание отрицательных полуволн синусоиды тока.

По мощности рассеивания, которая зависит от наибольшего разрешенного прямого тока, выпрямительные диоды делят на три типа – маломощные, средней мощности, мощные.

  • Слаботочные диоды могут использоваться в цепях, в которых величина тока не превышает 0,3 А. Изделия отличаются малой массой и компактными габаритами, поскольку их корпус изготавливается из полимерных материалов.
  • Диоды средней мощности могут работать в диапазоне токов 0,3-10,0 А. В большинстве случаев они имеют металлический корпус и жесткие выводы. Производят их в основном из очищенного кремния. Со стороны катода изготавливается резьба для фиксации на теплоотводящем радиаторе.
  • Мощные (силовые) диоды работают в цепях с током более 10 А. Их корпусы изготавливают из металлокерамики и металлостекла. Конструктивное исполнение – штыревое или таблеточное. Производители предлагают модели, рассчитанные на токи до 100 000 А и напряжение до 6 кВ. Изготавливаются в основном из кремния.

Диодные детекторы

Такие устройства получают комбинацией в схеме диодов с конденсаторами. Они предназначены для выделения низких частот из модулированных сигналов. Присутствуют в большинстве аппаратов бытового применения – радиоприемниках и телевизорах. В качестве детекторов излучения используются фотодиоды, преобразующие свет, попадающий на светочувствительную область, в электрический сигнал.

Ограничительные устройства

Защиту от перегруза обеспечивает цепочка из нескольких диодов, которые подключают к питающим шинам в обратном направлении. При соблюдении стандартного рабочего режима все диоды закрыты. Однако при выходе напряжения сверх допустимого назначения срабатывает один из защитных элементов.

Диодные переключатели

Переключатели, представляющие собой комбинацию диодов, которые применяются для мгновенного изменения высокочастотных сигналов. Такая система управляется постоянным электрическим током. Высокочастотный и управляющие сигналы разделяют с помощью конденсаторов и индуктивностей.

Диодная искрозащита

Эффективную искрозащиту создают с помощью комбинирования шунт-диодного барьера, ограничивающего напряжение, с токоограничительными резисторами.

Параметрические диоды

Используются в параметрических усилителях, которые являются подвидом резонансных регенеративных усилителей.

Принцип работы основан на физическом эффекте, который заключается в том, что при поступлении на нелинейную емкость разночастотных сигналов часть мощности одного сигнала можно направить на рост мощности другого сигнала. Элементом, предназначенным для содержания нелинейной емкости, и является параметрический диод.

Смесительные диоды

Смесительные устройства используются для трансформации сверхвысокочастотных сигналов в сигналы промежуточной частоты. Трансформация сигналов осуществляется, благодаря нелинейности параметров смесительного диода. В качестве смесительных СВЧ-диодов используются приборы с барьером Шоттки, варикапы, обращенные диоды, диоды Мотта.

Умножительные диоды

Эти СВЧ устройства используются в умножителях частоты. Они могут работать в дециметровом, сантиметровом, миллиметровом диапазонах длин волн. Как правило, в качестве умножительных приборов используются кремниевые и арсенид-галлиевые устройства, часто – с эффектом Шоттки.

Настроечные диоды

Принцип работы настроечных диодов основан на зависимости барьерной емкости p-n перехода от величины обратного напряжения. В качестве настроечных используются приборы кремниевые и арсенид-галлиевые. Эти детали применяют в устройствах перестройки частоты в сверхчастотном диапазоне.

Генераторные диоды

Для генерации сигналов в сверхвысокочастотном диапазоне востребованы устройства двух основных типов – лавинно-пролетные и диоды Ганна. Некоторые генераторные диоды при условии включения в определенном режиме могут выполнять функции умножительных устройств.

Виды диодов по типу конструкции

Стабилитроны (диоды Зенера)

Эти устройства способны сохранять рабочие характеристики в режиме электрического пробоя. В низковольтных устройствах (напряжение до 5,7 В) используется туннельный пробой, в высоковольтных – лавинный. Стабилизацию невысоких напряжений обеспечивают стабисторы.

Стабисторы

Стабиистор, или нормистор, — это полупроводниковый диод, в котором для стабилизации напряжения используется прямая ветвь вольт-амперной характеристики (то есть в области прямого смещения напряжение на стабисторе слабо зависит от тока). Отличительной особенностью стабисторов по сравнению со стабилитронами является меньшее напряжение стабилизации (примерно 0,7-2 V).

Читайте также:  Продлеваем жизнь компактной люминесцентной лампе (экономке)

Диоды Шоттки

Устройства, применяемые в качестве выпрямительных, умножительных, настроечных, работают на базе контакта металл-полупроводник. Конструктивно они представляют собой пластины из низкоомного кремния, на которые наносится высокоомная пленка с тем же типом проводимости. На пленку вакуумным способом напыляется металлический слой.

Варикапы

Варикапы выполняют функции емкости, величина которой меняется с изменением напряжения. Основная характеристика этого прибора – вольт-фарадная.

Туннельные диоды

Эти полупроводниковые диоды имеют падающий участок на вольтамперной характеристике, возникающий из-за туннельного эффекта. Модификация туннельного устройства – обращенный диод, в котором ветвь отрицательного сопротивления выражена мало или отсутствует. Обратная ветвь обращенного диода соответствует прямой ветви традиционного диодного устройства.

Тиристоры

В отличие от обычного диода, тиристор, кроме анода и катода, имеет третий управляющий электрод. Для этих моделей характерны два устойчивых состояния – открытое и закрытое. По устройству эти детали разделяют на динисторы, тринисторы, симисторы. При производстве этих изделий в основном используется кремний.

Симисторы

Симисторы (симметричные тиристоры) – это разновидность тиристора, используется для коммутации в цепях переменного тока.

В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно.

Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания.

Динисторы

Динистором, или диодным тиристором, называется устройство, не содержащее управляющих электродов. Вместо этого они управляются напряжением, приложенным между основными электродами. Их основное применение – управление мощной нагрузкой при помощи слабых сигналов. Также динисторы используют при изготовлении переключающих устройств.

Диодные мосты

Это 4, 6 или 12 диодов, которые соединяются между собой. Число диодных элементов определяется типом схемы, которая бывает – однофазной, трехфазной, полно- или полумостовой. Мосты выполняют функцию выпрямления тока. Часто используются в автомобильных генераторах.

Фотодиоды

Предназначены для преобразования световой энергии в электрический сигнал. По принципу работы аналогичны солнечным батареям.

Светодиоды

Эти устройства при подключении к электрическому току излучают свет. Светодиоды, имеющие широкую цветовую гамму свечения и мощность, применяются в качестве индикаторов в различных приборах, излучателей света в оптронах, используются в мобильных телефонах для подсветки клавиатуры. Приборы высокой мощности востребованы в качестве современных источников света в фонарях.

Инфракрасные диоды

Это разновидность светодиодов, излучающая свет в инфракрасном диапазоне.

Применяется в бескабельных линиях связи, КИП, аппаратах дистанционного управления, в камерах видеонаблюдения для обзора территории в ночное время суток.

Инфракрасные излучающие устройства генерируют свет в диапазоне, который не доступен человеческому взгляду. Обнаружить его можно с помощью фотокамеры мобильного телефона.

Диоды Ганна

Эта разновидность сверхчастотных диодов изготавливается из полупроводникового материала со сложной структурой зоны проводимости. Обычно при производстве этих устройств используется арсенид галлия электронной проводимости. В этом приборе нет p-n перехода, то есть характеристики устройства являются собственными, а не возникающими на границе соединения двух разных полупроводников.

Магнитодиоды

В таких приборах ВАХ изменяется под действием магнитного поля. Устройства используются в бесконтактных кнопках, предназначенных для ввода информации, датчиках движения, приборах контроля и измерения неэлектрических величин.

Лазерные диоды

Эти устройства, имеющие сложную структуру кристалла и сложный принцип действия, дают редкую возможность генерировать лазерный луч в бытовых условиях. Благодаря высокой оптической мощности и широким функциональным возможностям, приборы эффективны в высокоточных измерительных приборах бытового, медицинского, научного применения.

Лавинные и лавинно-пролетные диоды

Принцип действия устройств заключается в лавинном размножении носителей заряда при обратном смещении p-n перехода и их преодолении пролетного пространства за определенный временной промежуток. В качестве исходных материалов используются арсенид галлия или кремний. Приборы в основном предназначаются для получения сверхвысокочастотных колебаний.

PIN-диоды

PIN-устройства между p- и n-областями имеют собственный нелегированный полупроводник (i-область). Широкая нелегированная область не позволяет использовать этот прибор в качестве выпрямителя. Однако зато PIN-диоды широко применяются в качестве смесительных, детекторных, параметрических, переключательных, ограничительных, настроечных, генераторных.

Триоды

Триоды – это электронные лампы. Он имеет три электрода: термоэлектронный катод (прямого или косвенного накала), анод и управляющую сетку.

Сегодня триоды практически полностью вытеснены полупроводниковыми транзисторами.

Исключение составляют области, где требуется преобразование сигналов с частотой порядка сотен МГц — ГГц высокой мощности при маленьком числе активных компонентов, а габариты и масса не имеют большого значения.

Маркировка диодов

Маркировка полупроводниковых диодных устройств включает цифры и буквы:

  • Первая буква характеризует исходный материал. Например, К – кремний, Г – германий, А – арсенид галлия, И – фосфид индия.
  • Вторая буква – класс или группа диода.
  • Третий элемент, обычно цифровой, обозначает применение и электрические свойства модели.
  • Четвертый элемент – буквенный (от А до Я), обозначающий вариант разработки.

Пример: КД202К – кремниевый выпрямительный диффузионный диод.

Другие материалы по теме

Характеристики диодов, конструкции и особенности применения

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.

Конструктивно-технологическая оптимизация параметров диодов Шоттки

Диоды Шоттки находят широкое применение в выходных каскадах импульсных источников питания и DC/DC-конверторов, используемых в системах электропитания компьютеров, серверов систем связи и передачи данных.

В системных блоках питания диоды Шоттки используются для выпрямления тока каналов +3,3 и +5 В при величине выходных токов в десятки ампер.

Серьезное внимание к вопросам быстродействия выпрямителей и снижения их энергетических потерь позволит увеличить КПД источников питания и повысить надежность работы силовых транзисторов первичной части блока питания.

Использование диодов Шоттки в схемах управляемых преобразователей энергии электропривода обеспечивает минимальное напряжение прямого восстановления диода при выключении силовых ключей, а также переключение силовых ключей с малыми коммутационными потерями и помехами. Благодаря этому возможно задавать высокую частоту коммутации, уменьшать количество вспомогательных компонентов, а также их размеры, массу и стоимость [1].

Барьер Шоттки также имеет меньшую электрическую емкость перехода, что позволяет заметно повысить рабочую частоту диода. Это свойство используется в интегральных микросхемах, где диодами Шоттки шунтируют переходы транзисторов логических элементов. В силовой электронике малая емкость перехода (т. е.

короткое время восстановления) позволяет создавать выпрямители, работающие на частотах в сотни килогерц и выше.

Благодаря хорошим временным характеристикам и малым емкостям перехода выпрямители на диодах Шоттки отличаются от традиционных диодных выпрямителей пониженным уровнем помех, что делает их наиболее предпочтительными для применения в импульсных блоках питания электронной аппаратуры.

Параметры диодов Шоттки

Довольно большой обратный ток и величина максимально допустимого обратного напряжения не более 200 В ограничивают применение кремниевых диодов Шоттки. Поэтому для увеличения допустимого обратного напряжения перспективно использование карбида кремния и арсенида галлия с шириной запрещенной зоны больше, чем у кремния, а также последовательное включение кристаллов.

Так, например, серию арсенид-галлиевых диодов Шоттки на напряжения 150–250 В производит фирма IXYS, а карбид-кремниевые диоды Шоттки с допустимыми значениями обратного напряжения 300–600 В — фирма Infineon Technologies.

Созданы лабораторные образцы диодов Шоттки, выдерживающие обратные напряжения не менее 1,5 кВ [2].

При этом карбид-кремниевые и арсенид-галлиевые диоды Шоттки имеют не только более высокое допустимое обратное напряжение, но и меньший обратный ток, чем кремниевые приборы.

Изменением высоты барьера Шоттки φB можно получать наилучшее соотношение между прямым напряжением и обратным током. Параметр φB входит в выражение для прямого напряжения VF в качестве отдельного слагаемого и экспоненциально влияет на величину обратного тока Ir.

где IF — прямой ток, Rser — последовательное сопротивление объема полупроводника и омического контакта, Ir — обратный ток, S — площадь контакта Шоттки, А** — модифицированная эффективная постоянная Ричардсона, Т — абсолютная температура, q — элементарный заряд, k — постоянная Больцмана, φB — высота барьера Шоттки, n — коэффициент неидеальности прямой ВАХ.

Читайте также:  Практика монтажа и особенности модульного заземления

Следует иметь в виду, что в области обратных напряжений вблизи Umax обратный ток контакта металл–кремний суммируется с током p-n-перехода охранного кольца с учетом лавинного умножения носителей заряда. Поэтому диоды Шоттки с высоким барьером обычно имеют более высокие значения максимально допустимого обратного напряжения и максимально допустимой температуры перехода, чем приборы с низким барьером (рис. 1).

Рис. 1. Электрические характеристики диодов Шоттки при максимально допустимой температуре перехода: 1, 3, 5 — +150 °С; 2, 4 — +175 °С разных изготовителей (1, 2 — STMicroelectronics; 3, 4 — International Rectifier; 5 — Philips)

Электрические свойства диодов Шоттки, прежде всего, определяются высотой потенциального барьера на границе раздела металл–полупроводник и поэтому зависят от выбора контактного металла. Среди наиболее распространенных в настоящее время — такие тугоплавкие переходные металлы, как Mo, V, Pd, Pt.

При этом следует учесть, что в процессе формирования контакта металл–полупроводник вследствие протекания твердофазных реакций на границе раздела при термообработке происходит формирование переходного слоя соответствующего силицида, который, по существу, и определяет электрические свойства барьера Шоттки, например его высоту [3].

Контакт на основе силицида платины обеспечивает получение наиболее высокого энергетического барьера, что предопределяет такие свойства диодов Шоттки, как малые токи утечки, высокие пробивные напряжения, широкий диапазон рабочих температур, помехозащищенность, временная стабильность.

Особенности конструкции

Простейшая конструкция диода Шоттки с параллельными контактами, границы которых находятся на поверхности эпитаксиального слоя, представлена на рис. 2 [4].

Для предотвращения снижения максимально допустимого обратного напряжения Vr max из-за увеличения обратного тока на границах параллельных контактов предложена конструкция с дополнительными p-n-переходами и использованием смыкания области обеднения (рис. 2б) [5].

Также существуют конструкции диодов Шоттки с параллельными контактами и канавками в кремнии, причем либо на дне канавки располагается материал с большей высотой барьера (рис. 3а) [6], либо вся канавка заполняется таким материалом (рис. 3б) [7].

Рис. 2. Структура диодов Шоттки: а) с параллельными контактами; б) с дополнительными p-n-переходами. 1 — подложка; 2 — эпитаксиальный слой; 3 — слой SiO2; 4 — охранное кольцо; 5 — контакт с меньшей высотой барьера; 6 — контакт с большей высотой барьера; 7 — металлизация анода; 8 — металлизация катода, 9 — дополнительные p-n-переходы

Рис. 3. Структура диодов Шоттки с параллельными контактами и канавками в кремнии. 1 — подложка; 2 — эпитаксиальный слой; 3 — слой SiO2; 4 — охранное кольцо; 5 — контакт с большей высотой барьера; 6 — контакт с меньшей высотой барьера; 7 — металлизация катода, 8 — металлизация анода

Однако диоды Шоттки с параллельными контактами характеризуются следующим недостатком: нанесение второго материала контакта требует предварительной обработки открытой поверхности кремния, во время которой происходит ее загрязнение металлическими примесями первого материала контакта.

В современных системных блоках питания компьютеров диоды Шоттки применяют, как правило, в виде диодных сборок (диодные полумосты), что повышает технологичность и компактность устройств, а также улучшает условия охлаждения диодов.

Диодные сборки выпускаются, в основном, в трех типах корпусов (рис.

 4): TO-220 (менее мощные сборки с рабочими токами до 20–25 А), TO-247 (более мощные сборки с рабочими токами 30–40 А), TO-3P (мощные сборки) и ТО-263 (для поверхностного монтажа).

Рис. 4. Конструкции диодных сборок: а) ТО-220; б) ТО-247; в) ТО-3P; г) ТО-263

Выбор вариантов технологического процесса

Современный уровень электрических параметров полупроводниковых приборов обуславливается технологией их изготовления.

Использование того или иного метода при создании приборов диктуется соображениями, связанными с техническими и экономическими показателями, а также надежностью приборов [8].

Процесс изготовления мощных быстродействующих диодов с такими параметрами, как прямой ток 2×5 А, обратный ток N и Uпроб

Диоды (часть 1). Устройство и работа. Характеристики и особенности

Самым простым по конструкции в семействе полупроводников являются диоды, имеющие в конструкции всего два электрода, между которыми существует проводимость электрического тока в одну сторону. Такой вид проводимости в полупроводниках создается благодаря их внутреннему устройству.

Особенности устройства

Не зная конструктивных особенностей диода, нельзя понять его принципа действия. Структура диода состоит из двух слоев с проводимостью различного вида.

Диод состоит из следующих основных элементов:

  • Корпус. Выполняется в виде вакуумного баллона, материалом которого может быть керамика, металл, стекло и другие прочные материалы.
  • Катод. Он расположен внутри баллона, служит для образования эмиссии электронов. Наиболее простым устройством катода является тонкая нить, раскаляющаяся в процессе действия. Современные диоды оснащены косвенно накаляющимися электродами, которые выполнены в виде металлических цилиндров со свойством активного слоя, имеющего возможность испускать электроны.
  • Подогреватель. Это особый элемент в виде нити, раскаляющейся от электрического тока. Подогреватель расположен внутри косвенно накаляющегося катода.
  • Анод. Это второй электрод диода, служащий для приема электронов, вылетевших от катода. Анод имеет положительный потенциал, по сравнению с катодом. Форма анода чаще всего так же, как и катода, цилиндрическая. Оба электрода аналогичны эмиттеру и базе полупроводников.
  • Кристалл. Его материалом изготовления является германий или кремний. Одна часть кристалла имеет р-тип с недостатком электронов. Другая часть кристалла имеет n-тип проводимости с избытком электронов. Граница, расположенная между этими двумя частями кристалла, называется р-n переходом.

Эти особенности конструкции диода позволяют ему проводить ток в одном направлении.

Принцип действия

Работа диода характеризуется его различными состояниями, и свойствами полупроводника при нахождении в этих состояниях. Рассмотрим подробнее основные виды подключений диодов, и какие процессы происходят внутри полупроводника.

Диоды в состоянии покоя

Если диод не подключен к цепи, то внутри него все равно происходят своеобразные процессы. В районе «n» есть излишек электронов, что создает отрицательный потенциал. В области «р» сконцентрирован положительный заряд. Совместно такие заряды создают электрическое поле.

Так как заряды с разными знаками притягиваются, то электроны из «n» проходят в «р», при этом заполняют дырки.

В итоге таких процессов в полупроводнике появляется очень слабый ток, увеличивается плотность вещества в области «р» до определенного значения.

При этом частицы расходятся по объему пространства равномерно, то есть, происходит медленная диффузия. Вследствие этого электроны возвращаются в область «n».

Для многих электрических устройств направление тока не имеет особого значения, все работает нормально. Для диода же, большое значение имеет направление протекания тока. Основной задачей диода является пропускание тока в одном направлении, чему благоприятствует переход р-n.

Обратное включение

Если диоды подсоединять к питанию по изображенной схеме, то ток не будет проходить через р-n переход. К области «n» подсоединен положительный полюс питания, а к «р» — минусовой. В итоге электроны от области «n» переходят к плюсовому полюсу питания. Дырки притягиваются минусовым полюсом. На переходе возникает пустота, носители заряда отсутствуют.

При повышении напряжения дырки и электроны осуществляют притягивание сильнее, и на переходе нет носителей заряда. При обратной схеме включения диода ток не проходит.

Повышение плотности вещества возле полюсов создает диффузию, то есть, стремление к распределению вещества по объему. Это возникает при выключении питания.

Обратный ток

Вспомним о работе неосновных переносчиков заряда. При запертом диоде, через него проходит малая величина обратного тока. Он и образуется от неосновных носителей, двигающихся в обратном направлении. Такое движение возникает при обратной полярности питания. Обратный ток обычно незначительный, так как число неосновных носителей очень мало.

При возрастании температуры кристалла их число повышается и обуславливает повышение обратного тока, что обычно приводит к повреждению перехода. Для того, чтобы ограничить температуру работы полупроводников, их корпус монтируют на теплоотводящие радиаторы охлаждения.

Прямое включение

Поменяем местами полюса питания между катодом и анодом. На стороне «n» электроны будут отходить от отрицательного полюса, и проходить к переходу. На стороне «р» дырки, имеющие положительный заряд, оттолкнутся от положительного вывода питания. Поэтому электроны и дырки начнут стремительное движение друг к другу.

Частицы с разными зарядами скапливаются возле перехода, и между ними образуется электрическое поле. Электроны проходят через р-n переход и двигаются в область «р». Часть электронов рекомбинирует с дырками, а остальные проходят к положительному полюсу питания. Возникает прямой ток диода, который имеет ограничения его свойствами. При превышении этой величины диод может выйти из строя.

Читайте также:  Десять современных тенденций в освещении интерьера

При прямой схеме диода, его сопротивление незначительное, в отличие от обратной схемы. Считается, что обратно ток по диоду не проходит. В результате мы выяснили, что диоды работают по принципу вентиля: повернул ручку влево – вода течет, вправо – нет воды. Поэтому их еще называют полупроводниковыми вентилями.

Прямое и обратное напряжение

Во время открытия диода, на нем имеется прямое напряжение. Обратным напряжением считается величина во время закрытия диода и прохождения через него обратного тока. Сопротивление диода при прямом напряжении очень мало, в отличие от обратного напряжения, возрастающего до тысяч кОм. В этом можно убедиться путем измерения мультиметром.

Сопротивление полупроводникового кристалла может изменяться в зависимости от напряжения. При увеличении этого значения сопротивление снижается, и наоборот.

Если диоды использовать в работе с переменным током, то при плюсовой полуволне синуса напряжения он будет открыт, а при минусовой – закрыт. Такое свойство диодов применяют для выпрямления напряжения. Поэтому такие устройства называются выпрямителями.

Характеристика диодов

Характеристика диода выражается графиком, на котором видна зависимость тока, напряжения и его полярности. Вертикальная ось координат в верхней части определяет прямой ток, в нижней части – обратный.

Горизонтальная ось справа обозначает прямое напряжение, слева – обратное. Прямая ветка графика выражает ток пропускания диода, проходит рядом с вертикальной осью, так как выражает повышение прямого тока.

Вторая ветка графика показывает ток при закрытом диоде, и проходит параллельно горизонтальной оси. Чем круче график, тем лучше диод выпрямляет ток. После возрастания прямого напряжения, медленно повышается ток. Достигнув области скачка, его величина резко нарастает.

На обратной ветви графика видно, что при повышении обратного напряжения, величина тока практически не возрастает. Но, при достижении границ допустимых норм происходит резкий скачок обратного тока. Вследствие этого диод перегреется и выйдет из строя.

Похожие темы:

Диоды лавинные ДЛ153

Диоды ДЛ153 – лавинные выпрямительные мощные низкочастотные диоды таблеточной конструкции общего назначения. Преобразовывают и регулируют постоянный и переменный ток до 2000 ампер частотой до 500 Гц в цепях с напряжением 1600 В – 3200 В (16-32 кл). Тип корпуса диодов серии ДЛ153 – PD53: диаметр контактной поверхности – Ø50 мм, габаритные размеры – Ø75х26 мм, масса – 0,550 кг. «PD» означает «pill diode» — таблеточный диод.

  • Лавинные диоды отличаются от силовых выпрямительных диодов тем, что они выдерживают значительные перенапряжения и после снятия напряжения восстанавливают свои параметры.
  • Часто запрашиваемые номиналы диодов: ДЛ153-1250, ДЛ153-1600, ДЛ153-2000.
  • Видео: Обзор силовых диодов таблеточной конструкции

Диоды изготавливаются для эксплуатации в умеренном, холодном (УХЛ) или тропическом (Т) климате; категория размещения – 2. Полярность (цоколевка) диодов определяется по значку на корпусе.

Применяются силовые диоды ДЛ153 в качестве выпрямительных и размагничивающих диодов, для предотвращения пагубного воздействия коммутационных перенапряжений, в низковольтных выпрямителях сварочного и гальванического оборудования, в неуправляемых или полууправляемых выпрямительных мостах, а также в электрогенераторах промышленности и транспорта.

Для отвода тепла диоды собирают с охладителями (радиаторами) при помощи резьбового соединения.

Чтобы обеспечить надежный тепловой и электрический контакт диода с охладителем, при сборке необходимо соблюдать усилие сжатия Fm (для ДЛ153 усилие зажатия составляет 22 кН).

Соответствие усилия сжатия определяется величиной прогиба траверсы. Также для лучшего отвода тепла при сборке может использоваться теплопроводящая паста КПТ-8.

Подробные характеристики, расшифровка маркировки, полярность, размеры, применяемые охладители указаны ниже. Гарантия работы поставляемых нашей компанией диодов составляет 2 года с момента их приобретения, что подкрепляется соответствующими документами по качеству.

Окончательная цена на диоды ДЛ153 зависит от класса, количества, сроков поставки, производителя, страны происхождения и формы оплаты.

30.Особенности конструкции и принцип действия лов типа м. Характеристики и параметры

В
ЛОВМ происходит взаимодействие
электронного потока с обратной
пространственной гармоникой волны в
замедляющей системе. Процесс взаимодействия
электронов с СВЧ полем происходит в
ЛОВМ так же, как в ЛБВМ.

Поперечная
составляющая электрического поля
группирует электроны, продольная
составляющая вызывает поперечное
смещение сгруппированных электронов
и преобразование их потенциальной
энергии в энергию СВЧ поля.

В процессе
взаимодействия средняя скорость
электронов остается постоянной и равной
переносной скорости электронов. ЛОВМ
являются самыми мощными генераторами
с электронной перестройкой частоты.
ЛОВМ перекрывают диапазон частот 0,15…18
ГГц с выходными мощностями от 5 кВт до
единиц ватт.

КПД достигает значений
35…40 %. Диапазон электронной перестройки
составляет 30…40 %, при этом обеспечивается
линейная зависимость частоты от
ускоряющего напряжения.

Одинаковый
диапазон изменения частоты в ЛОВМ можно
получить для прочих равных условий при
меньшем изменении напряжений чем в
ЛОВО. ЛОВМ используются в системах
радиопротиводействия, системах связи
с частотной модуляцией.

31.Особенности смесительных и детекторных диодов свч.Вах,эквивалентная схема,параметры смесительных и детекторных диодов

Для
детектирования и преобразования на
более низкую частоту слабых СВЧ сигналов
обычно используют детекторные и
смесительные диоды, работающие как
варисторы, поэтому в их конструкциях и
характеристиках имеется много общего,
а отличие в основном заключается в
режиме работы.

Современные детекторные
и смесительные диоды используют структуры
ДБШ, обладающие целым рядом достоинств,
обусловленных тем, что ДБШ работают на
основных носителях. Точечные прижимные
диоды находят применение в основном в
измерительной аппаратуре в качестве
детекторных диодов.

Иногда в детекторах
и смесителях применяют обращенные
диоды, у которых используется обратная
ветвь ВАХ, обладающая высокой крутизной.
Обращенные диоды имеют хорошие
электрические характеристики, однако,
из-за низкой электрической прочности,
трудностей изготовления широкого
применения не получили.

Частотные
свойства смесительных и детекторных
диодов характеризует значение критической
частоты диода:

fc
=
1/(2πrsCб)-1
[ГГц].

Для
эффективной работы диода необходимо,
чтобы критическая частота диода была
значительно выше рабочей частоты.

Электрическая
прочность диодов в области обратных
напряжений характеризуется нормируемым
обратным напряжением Uнорм.обр,
при котором обратный
ток достигает определенного значения,
например для ДБШ Iобр = 10мкА.
Для точечных диодов Uнорм.обр
=
1…3 В, для ДБШ Uнорм.обр
=
3…10 В, меньшие значения соответствуют
более высокочастотным диодам.

В области
прямых токов электрическая прочность
диодов характеризуется энергией
«выгорания» — той минимальной
энергией Wвыг
импульса
длительностью не более 10-8
с,
после воздействи которого парамеры
диода необратимо ухудшаются на заданное
значение.

Обычно Wвыг

10-8…10-7
Дж,
поэтому диоды необходимо защищать от
перегрузок и действия статического
электричества.

При
работе в непрерывном режиме допустимая
рассеиваемая мощность Ррас
составляет
10…40 мВт для германиевых диодов и 10…100
мВт для кремниевых и ДБШ. Детекторные
диоды находят основное применение для
индикации и измерения параметров
сигналов СВЧ и служат для
преобразованиянепрерывны СВЧ сигналов
в сигнал постянного тока или импульсного
сигнала СВЧ в видеоимпульс

Смесительные
диоды используют для преобразования
частоты в радиоприемных устойствах СВЧ
диапазона, причем очень часто смеситеь
является входным каскадом приемного
устройства. В таких случаях наиболее
важными параметрами смесительных
диодов, является коэффициент шума Кш,
потери преобразования L.

У современных
смесительных диодов Кш
=
4…16 дБ. Меньшие значения Кш
относятся
к диодам более низких частот.

Смесительные
диоды являются пассивными элементами
с внутренним активным сопротилением,
поэтому при побразовании часоты
происходят потери мощности полезного
сигнала, обычно оцениваемые параметром
L:

L
= 10 lg(Pc/Pпч)
[дБ],

Рс

мощность сигнала, Рпч

мощность сигнала на промежуточной
частоте.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock
detector