Эдс, разность потенциалов и напряжение — что это и в чем разница

В материалах по электротехнике и электронике часто можно встретить три физические величины, имеющие одну и ту же единицу измерения — Вольт: разность электрических потенциалов, электрическое напряжение и ЭДС — электродвижущая сила.

Чтобы раз и навсегда избавиться от путаницы в терминах, давайте разберемся, в чем же заключаются различия между этими тремя понятиями. Для этого подробно рассмотрим каждое из них по отдельности.

ЭДС, разность потенциалов и напряжение - что это и в чем разница

Разность электрических потенциалов

На сегодняшний день физикам известно, что источниками электрических полей являются электрические заряды или изменяющиеся магнитные поля. Когда же мы рассматриваем определенные точки А и В в электростатическом поле известной напряженности E, то можем тут же говорить и о разности электростатических потенциалов между двумя данными точками в текущий момент времени.

Эта разность потенциалов находится как интеграл электрической напряженности между точками А и В, расположенными в данном электрическом поле на определенном расстоянии друг от друга:

ЭДС, разность потенциалов и напряжение - что это и в чем разница

Практически такая характеристика как потенциал относится к одному электрическому заряду, который теоретически может быть неподвижно установлен в данную точку электростатического поля, и тогда величина электрического потенциала для этого заряда q будет равна отношению потенциальной энергии W (взаимодействия данного заряда с данным полем) к величине этого заряда:

Отсюда следует, что разность потенциалов оказывается численно равна отношению работы A (работа по сути — изменение потенциальной энергии заряда), совершаемой данным электростатическим полем при переносе рассматриваемого заряда q из точки поля 1 в точку поля 2, к величине данного пробного заряда q:

ЭДС, разность потенциалов и напряжение - что это и в чем разница

  • В этом и заключается практический смысл термина «разность потенциалов», применительно к электротехнике, электронике, и вообще — к электрическим явлениям.
  • И если мы говорим о какой-нибудь электрической цепи, то можем судить и о разности потенциалов между двумя точками такой цепи, если в ней в данный момент действует электростатическое поле, причем как раз потому, что рассматриваемые точки цепи будут находится одновременно и в электростатическом поле определенной напряженности.
  • Как было сказано выше, разность электрических потенциалов измеряется в вольтах (1 вольт = 1 Дж/1Кл).
  • ЭДС, разность потенциалов и напряжение - что это и в чем разница

Электростатическое поле — электрическое поле, создаваемое неподвижными электрическими зарядами.

Для того, чтобы электрические заряды были неподвижны, на них не должны действовать силы в тех местах, где эти заряды могли бы двигаться.

Но внутри проводников заряды могут свободно двигаться, поэтому при наличии электрического поля внутри проводников в них возникло бы движение зарядов (электрический ток).

Следовательно, заряды могут оставаться неподвижными только в том случае, если они создают такое поле, которое везде внутри проводников равно нулю, а на поверхности проводников направлено перпендикулярно к поверхности (т. к. иначе заряды двигались бы вдоль поверхности).

Для этого неподвижные заряды должны располагаться только по поверхности проводников и при том именно таким образом, чтобы электрическое поле внутри проводников было равно нулю, а на поверхности перпендикулярно к ней.

Все сказанное относится к случаю неподвижных зарядов. В случае движения зарядов, т. е. наличия токов в проводниках, в них должно существовать электрическое поле (т. к.

иначе не могли бы течь токи) и, следовательно, движущиеся заряды располагаются в проводниках, вообще говоря, не так, как неподвижные, и создают электрические поля, отличные по своей конфигурации от электростатического поля.

Но по своим свойствам электростатическое поле ничем не отличается от электрического поля движущихся зарядов.

Электрическое напряжение U

Теперь рассмотрим такое понятие как электрическое напряжение U между точками А и В в электрическом поле или в электрической цепи. Электрическим напряжением называется скалярная физическая величина, численно равная работе эффективного электрического поля (включая и сторонние поля!), совершаемой при переносе единичного электрического заряда из точки А в точку В.

Электрическое напряжение измеряется в вольтах, как и разность электрических потенциалов. В случае с напряжением принято считать, что перенос заряда не изменит распределения зарядов, являющихся источниками эффективного электростатического поля. И напряжение в этом случае будет складываться из работы электрических сил и работы сторонних сил.

Если сторонние силы отсутствуют, то работу совершит лишь потенциальное электрическое поле, и в этом случае электрическое напряжение между точками А и В цепи будет численно в точности равно разности потенциалов между данными точками, то есть отношению работы по переносу заряда из точки А в точку В к величине заряда q:

ЭДС, разность потенциалов и напряжение - что это и в чем разница

Однако в общем случае напряжение между точками A и B отличается от разности потенциалов между этими точками на работу сторонних сил по перемещению единичного положительного заряда:

ЭДС, разность потенциалов и напряжение - что это и в чем разница

Эту работу сторонних сил как раз и называют электродвижущей силой на данном участке цепи, сокращенно — ЭДС:

ЭДС, разность потенциалов и напряжение - что это и в чем разница

Электродвижущая сила — ЭДС

Электродвижущая сила — ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах.

ЭДС, разность потенциалов и напряжение - что это и в чем разница

ЭДС является скалярной физической величиной, характеризующей работу непосредственно действующих сторонних сил (любых сил за исключением электростатических) в цепях постоянного или переменного тока. В частности, в замкнутой проводящей цепи ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура.

Здесь при необходимости вводят в рассмотрение электрическую напряженность сторонних сил Еex, являющуюся векторной физической величиной, равной отношению величины действующей на пробный электрический заряд сторонней силы к величине данного заряда. Тогда в замкнутом контуре L ЭДС будет равна:

ЭДС, разность потенциалов и напряжение - что это и в чем разница

Можно говорить об электродвижущей силе на любом участке электрической цепи. Это будет, по сути, удельная работа сторонних сил лишь на рассматриваемом ее участке.

ЭДС гальванического элемента, к примеру, есть ни что иное, как работа сторонних сил при перемещении единичного положительного заряда только внутри этого гальванического элемента, а именно — от одного его полюса к другому.

Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит (!) от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока за пределами данного источника равна нулю.

Чем отличается ЭДС от напряжения: простое объяснение на примере

Многие люди (в то числе и некоторые электрики) путают понятие электродвижущей силы (ЭДС) и напряжения. Хотя эти понятия имеют отличия.

Несмотря на то, что они незначительные, не специалисту сложно в них разобраться. Не маловажную роль в этом играет единица измерения. Напряжение и ЭДС измеряются в одних единицах – Вольтах.

На этом отличия не заканчиваются, подробно обо всем мы рассказали в статье!

Что такое электродвижущая сила

Подробно этот вопрос мы рассмотрели в отдельной статье: https://samelectrik.ru/chto-takoe-eds-obyasnenie-prostymi-slovami.html

Под ЭДС понимается физическая величина, характеризующая работу каких-либо сторонних сил, находящихся в источниках питания постоянного или переменного тока.

При этом, если имеется замкнутый контур, то можно сказать, что ЭДС равна работе сил по перемещению положительного заряда к отрицательному по замкнутой цепи.

Или простыми словами, ЭДС источника тока представляет работу, необходимую для перемещения единичного заряда между полюсами.

ЭДС, разность потенциалов и напряжение - что это и в чем разница

При этом если источник тока имеющего бесконечную мощность, а внутреннее сопротивление будет отсутствовать (позиция А на рисунке), то ЭДС можно рассчитать по закону Ома для участка цепи, т.к. напряжение и электродвижущая сила в этом случае равны.

I=U/R,

где U – напряжение, а в рассмотренном примере — ЭДС.

Однако, реальный источник питания имеет конечное внутреннее сопротивление. Поэтому такой расчет нельзя применять на практике. В этом случае для определения ЭДС пользуются формулой для полной цепи.

I=E/(R+r),

где E (также обозначается как «ԑ») — ЭДС; R – сопротивление нагрузки, r – внутреннее сопротивление источника электропитания, I – ток в цепи.

Однако, эта формула не учитывает сопротивление проводников цепи. При этом необходимо понимать, что внутри источника постоянного тока и во внешней цепи, ток течет в разных направлениях. Разница заключается в том, что внутри элемента он течет от минуса к плюсу, то во внешней цепи от плюса к минусу.

Это наглядно представлено на ниже приведенном рисунке:

ЭДС, разность потенциалов и напряжение - что это и в чем разница

При этом электродвижущая сила измеряется вольтметром, в случае, когда нет нагрузки, т.е. источник питания работает в режиме холостого хода.

Чтобы найти ЭДС через напряжение и сопротивление нагрузки нужно найти внутреннее сопротивление источника питания, для этого измеряют напряжение дважды при разных токах нагрузки, после чего находят внутреннее сопротивление.

Ниже приведен порядок вычисления по формулам, далее R1, R2 — сопротивление нагрузки для первого и второго измерения соответственно, остальные величины аналогично, U1, U2 – напряжения источника на его зажимах под нагрузкой.

  • Итак, нам известен ток, тогда он равен:
  • I1=E/(R1+r)
  • I2=E/(R2+r)
  • При этом:
  • R1=U1/I1
  • R2=U2/I2
  • Если подставить в первые уравнения, то:
  • I1=E/( (U1/I1)+r)
  • I2=E/( (U2/I2)+r)
  • Теперь разделим левые и правые части друг на друга:
  • (I1/I2)= [E/( (U1/I1)+r)]/[E/( (U2/I2)+r)]
  • После вычисления относительно сопротивления источника тока получим:
  • r=(U1-U2)/(I1-I2)
  • Внутреннее сопротивление r:
  • r= (U1+U2)/I,
  • где U1, U2 — напряжение на зажимах источника при разном токе нагрузки, I — ток в цепи.
  • Тогда ЭДС равно:
  • E=I*(R+r) или E=U1+I1*r

Что такое напряжение

Электрическое напряжение (обозначается как U) – это физическая величина, которая отражает количественную характеристику работы электрического поля по переносу заряда из точки А в точку В.

Читайте также:  Судебный процесс над лампочкой накаливания

Соответственно напряжение может быть между двумя точками цепи, но в отличии от ЭДС оно может быть между двумя выводами какого-то из элементов цепи.

Напомним, что ЭДС характеризует работу, выполненную сторонними силами, то есть работу самого источника тока или ЭДС по переносу заряда через всю цепь, а не на конкретном элементе.

Это определение можно выразить простым языком. Напряжение источников постоянного тока – это сила, которая перемещает свободные электроны от одного атома к другому в определенном направлении.

Для переменного тока используют следующие понятия:

  • мгновенное напряжение — это разность потенциалов между точками в данный промежуток времени;
  • амплитудное значение – представляет максимальную величину по модулю мгновенного значения напряжения за промежуток времени;
  • среднее значение – постоянная составляющая напряжения;
  • среднеквадратичное и средневыпрямленное.

Напряжение участка цепи зависит от материала проводника, сопротивления нагрузки и температуры. Так же как и электродвижущая сила измеряется в Вольтах.

Часто для понимания физического смысла напряжения, его сравнивают с водонапорной башней. Столб воды отождествляют с напряжением, а поток с током.

При этом столб воды в башне постепенно уменьшается, что характеризует понижение напряжения и уменьшения силы тока.

Так в чем же отличие

Для лучшего понимания, в чем состоит разница электродвижущей силы от напряжения, рассмотрим пример. Имеется источник электрической энергии бесконечной мощности, в котором отсутствует внутреннее сопротивление. В электрической цепи смонтирована нагрузка. В этом случае будет справедливо утверждение, что ЭДС и напряжение тождественно равны, т.е между этими понятиями отсутствует разница.

Однако, это идеальные условия, которые в реальной жизни не встречаются. Эти условия используют исключительно при расчетах. В реальной жизни учитывается внутреннее сопротивление источника питания. В этом случае ЭДС и напряжение имеют отличия.

ЭДС, разность потенциалов и напряжение - что это и в чем разница

На рисунке представлено, какая разница будет в значениях электродвижущей силы и напряжении в реальных условиях. Вышеприведенная формула закона Ома для полной цепи описывает все процессы. При разомкнутой цепи на клеммах батарейки будет значение 1,5 Вольта. Это значение ЭДС. Подключив нагрузку, в данном случае это лампочка, на ней будет напряжение 1 вольт.

Разница от идеального источника заключается в наличии внутреннего сопротивления источника питания. На этом сопротивлении и происходит падение напряжения. Эти процессы описывает закон Ома для полной цепи.

Если измерительный прибор на зажимах источника электроэнергии показывает значение 1,5 Вольта, это будет электродвижущая сила, но повторим, при условии отсутствия нагрузки.

При подключении нагрузки на клеммах будет заведомо меньшее значение. Это и есть напряжение.

Вывод

Из вышесказанного можно сделать вывод, что основная разница между ЭДС и напряжением состоит:

  1. Электродвижущая сила зависит от источника питания, а напряжение зависит от подключенной нагрузки и тока, протекающего по цепи.
  2. Электродвижущая сила это физическая величина, характеризующая работу сторонних сил неэлектрического происхождения, происходящих в цепях постоянного и переменного тока.
  3. Напряжение и ЭДС имеет единую единицу измерения – Вольт.
  4. U -величина физическая, равная работе эффективного электрического поля, производимой при переносе единичного пробного заряда из точки А в точку В.

Таким образом, кратко, если представить U в виде столба воды, то ЭДС можно представить что это насос, поддерживающий уровень воды на постоянном уровне. Надеемся, после прочтения статьи Вам стало понятно основное отличие!

Материалы по теме:

Чем отличается ЭДС от напряжения

Чем отличается ЭДС (электродвижущая сила) от напряжения? Рассмотрим сразу на конкретном примере. Берем батарейку, на которой написано 1,5 вольт. Подключаем к ней вольтметр, как показано на рисунке 1, чтобы проверить, действительно ли батарейка исправна.

ЭДС, разность потенциалов и напряжение - что это и в чем разница

Рисунок 1

Вольтметр показывает 1,5 В. Значит, батарейка исправна. Подключаем ее к маленькой лампочке. Лампочка светится. Теперь параллельно лампочке подключаем вольтметр, чтобы проверить: действительно ли на лампочку приходится 1,5 В. Получается схема, показанная на рисунке 2.

ЭДС, разность потенциалов и напряжение - что это и в чем разница

Рисунок 2

И тут оказывается, что вольтметр показывает, например, 1 В. Куда потрачены 0,5 В (которые разность между 1,5 В и 1 В)?

Дело в том, что любой реальный источник питания имеет внутреннее сопротивление (обозначается буквой r).

Оно во многих случаях снижает характеристики источников питания, но изготовить источник питания вообще без внутреннего сопротивления невозможно.

Поэтому нашу батарейку можно представить как идеальный источник питания и резистор, сопротивление которого соответствует внутреннему сопротивлению батарейки (рисунок 3).

  • ЭДС, разность потенциалов и напряжение - что это и в чем разница
  • Рисунок 3
  • Так вот, ЭДС в данном примере – это 1,5 В, Напряжение источника питания – 1 В, а разница 0,5 В была рассеяна на внутреннем сопротивлении источника питания.

ЭДС – это максимальное количество вольт, которое источник питания может выдать в цепь. Это постоянная для исправного источника питания величина. А напряжение источника питания зависит от того, что к нему подключено. (Здесь мы говорим только о тех типах источников питания, которые изучаются в рамках школьной программы).

  1. В нашем примере лампочка с сопротивлением R и резистор соединены последовательно, поэтому ток в цепи можно найти по формуле
  2. И тогда напряжение на лампочке равно

Получается, чем больше сопротивление лампочки, тем больше вольт приходится на нее, и тем меньше вольт бесполезно теряется в батарейке. Это касается не только лампочки и батарейки, но и любой цепи, состоящей из источника питания и нагрузки.

Чем больше сопротивление нагрузки, тем меньше разница между напряжением и ЭДС. Если сопротивление нагрузки очень большое, то напряжение практически равно ЭДС.

Сопротивление вольтметра всегда очень большое, поэтому в схеме на рисунке 1 он показал значение 1,5 В.

Пониманию смысла ЭДС мешает то, что в быту мы этот термин практически не употребляем. Мы говорим в магазине: «Дайте мне батарейку с напряжением 1,5 вольта», хотя правильно говорить: «Дайте мне батарейку с ЭДС 1,5 вольта». Но так уж повелось…

  • Похожая статья: чем отличается напряжение от потенциала.

Чем отличается ЭДС от напряжения

Интересно многие сразу поняли, в чем разница между ЭДС и напряжением? И никого не поправлял учитель (учительница) по физике, когда на практических занятиях говорил (-ла) о том, что мы подключаем именно источник ЭДС, а не напряжения? В большинстве случаев мы с вами путались, потому что и ЭДС, и напряжение измеряется в Вольтах. Так давайте все-таки разберемся, чем принципиально отличается ЭДС от напряжения.

Что такое ЭДС

Итак, для начала давайте разберемся, что такое ЭДС. Электродвижущая сила (ЭДС) — это такая физическая величина, которая характеризует работу сторонних (не потенциальных) сил в источниках переменного либо же постоянного тока.

В замкнутой цепи ЭДС — это работа сил, совершаемая для перемещения единичного заряда вдоль всего контура.

Из выше представленного определения вытекает следующее: источниками ЭДС являются силы, которые не имеют прямое отношение к электростатике, но при этом они являются силами, которые создают движение заряда в замкнутой электрической цепочке.

yandex.ru

Например, при механическом вращении обмотки ротора в электромагнитном поле, в ней будет формироваться индукционная ЭДС. При этом формирование ЭДС будет проходить в каждом витке отдельно, но при этом электродвижущая сила соседних витков будет складываться, и на выходе мы будем иметь сумму ЭДС всех витков.

Если посмотреть на аккумуляторные батареи, то в них источником ЭДС является химическая реакция.

Кроме этого источниками могут выступать так называемые элементы Пельтье, в которых ЭДС образуется при термическом нагреве.

Пьезоэффект (когда при механическом воздействии на материал на его концах образуется разность потенциалов) также относится к источникам ЭДС. Впрочем, как и фотоэффект.

yandex.ru

  • Из выше представленных примеров видно, что, применяя различные материалы и способы их взаимодействия, можно получить ЭДС, способную организовать упорядоченное движение заряженных частиц в замкнутом контуре.
  • Условно принято считать, что ЭДС — это работа в 1 Джоуль, совершаемая при перемещении заряда в 1 Кулон и измеряется в Вольтах.
  • ЭДС = 1Джоуль/1Кулон= 1 Вольт.
  • Ну а теперь давайте переключим свое внимание на напряжение.

Что такое напряжение

Итак, напряжение измеряется в аналогичных величинах, то есть в Вольтах. И напряжение — это разница потенциалов между двумя точками цепочки. Причем данные потенциалы рассматриваются только в электростатическом поле.

Получается, если мы с вами будем перемещать заряд величиной в 1 Кулон и точку №1 в точку №2, мы так же будем совершать работу в 1 Джоуль, при том условии, что разница потенциалов между точками будет равна 1 Вольт.

Вроде одно и то же, но в случае с напряжением обязательным условием является наличие электростатического поля. А откуда оно взялось? Так вот источником этого поля и является подключенный к цепи источник ЭДС.

Если провести аналогию с водонапорной башней, то можно представить следующую картинку:

yandex.ru

На картинке наглядно продемонстрирована разница между ЭДС и напряжением. В правой части жидкость перемещается за счет давления (напряжения), а в левой части за счет работы сторонних сил (электродвижущей силы).

Получается, если мы с вами возьмем любой гальванический элемент, например, батарейку и измерим с помощью мультиметра его напряжение без подключенной нагрузки, то таким образом мы получим величину ЭДС.

Читайте также:  Чем опасна старая электропроводка

Если же мы с вами создадим замкнутую цепь, в которую будет включена любая нагрузка, то, измеряя напряжение на тех же выводах батарейки, мы с вами увидим уже напряжение, и оно будет несколько меньше чем величина ЭДС.

Это связано с тем, что внутри любого источника ЭДС присутствует внутреннее сопротивление и когда мы подключаем нагрузку, происходит падение напряжения не только на концах нагрузки, но и на самом внутреннем сопротивлении источника ЭДС.

Если вам понравилась статья, тогда оцените ее лайком и спасибо, что уделили свое внимание.

В чем разница между электрическим потенциалом, разностью потенциалов (pd), напряжением и электродвижущей силой (emf)? — спросисеть

В любом случае, простой ответ: ЭДС не является силой в механическом смысле. Он измеряет объем работы, которую необходимо проделать, чтобы единичный заряд перемещался по замкнутому контуру проводящего материала.

Давайте сделаем это более понятным. В статическом случае (игнорируя изменение во времени любого магнитного поля), электрическое поле в точке может быть получено исключительно из скаляра как отрицательное значение градиента этого скаляра. Этот скаляр в любой точке называется «электрическим потенциалом» в этой точке.

Если две точки имеют разные потенциалы, мы говорим, что существует разность потенциалов. Очевидно, что разница в потенциалах, а не их абсолютные значения. Поэтому можно произвольно присвоить нулевое значение для некоторой фиксированной точки, потенциал которой можно считать постоянной, и сравнить потенциалы других точек по отношению к ней.

Таким образом, не нужно всегда говорить о разности потенциалов, а просто о потенциалах.

  • Теперь, часто этот «электрический потенциал» в некоторой точке в проводнике или диэлектрике называют «напряжением» в этой точке, назначая значение напряжения равным нулю для земли, поскольку потенциал земли постоянен для всех практических целей.
  • Если нет изменений магнитного поля, то работа, выполненная единичным зарядом в замкнутом контуре, будет 0 0 , Но если магнитное поле меняется, то оно будет отличным от нуля. Напомним формулу:
  • ∇ × E = — ∂ В ∂ T , ∇ × Е знак равно — ∂ В ∂ T ,

На самом деле это означает, что электрическое поле, полученное исключительно из скалярного потенциала, не может поддерживать электрический ток в замкнутой цепи. Таким образом, эдс подразумевает наличие какого-то источника, отличного от источника, который может производить только скалярный потенциал.

Следующее уравнение рассказывает всю историю:

Е = — ∇ ϕ — ∂ ∂ T , Е знак равно — ∇ φ — ∂ ∂ T ,

где φ φ скалярный потенциал и это векторный потенциал. Рон Маймон

Люди иногда отрицают не потому, что вы не правы, а потому, что вы повторяете ответы других людей, не добавляя ничего нового.

ganzewoort

sb1, ваше объяснение снова не в состоянии объяснить ЭДС разомкнутой цепи. Что еще интереснее, мне любопытно услышать ваше объяснение того, как закон Фарадея, о котором вы говорите, учитывает падение напряжения, измеренное на однополярном генераторе. Возможно, это отдельный вопрос, который нужно задать в stackexchange.

ganzewoort

Я согласен со скалярным потенциалом (я думаю, вы очень хорошо это объяснили и не повторяете того, что было сказано до сих пор). Однако скалярный потенциал — это всего лишь математическая конструкция, созданная для удобства, которая не присуща явлениям. Я добавляю отдельный вопрос относительно однополярного генератора.

19. Эдс, разность потенциалов и напряжение

Электродвижущая
сила
 (ЭДС) —
скалярная физическая
величина,
характеризующая работу сторонних (н
епотенциальных) сил висточниках постоянного
или переменного тока. В замкнутом
проводящем контуре ЭДС равна работе этих
сил по перемещению единичного
положительного заряда вдоль
контура.

ЭДС
можно выразить через напряжённость
электрического поля сторонних
сил ().
В замкнутом контуре ()
тогда ЭДС будет равна:

,
где —
элемент длины контура.

Причиной
электродвижущей силы может стать
изменение магнитного
поля в
окружающем пространстве. Это явление
называетсяэлектромагнитной
индукцией.
Величина ЭДС индукции в контуре
определяется выражением

где — поток
магнитного поля через
замкнутую поверхность ,
ограниченную контуром. Знак «−» перед
выражением показывает, что индукционный
ток, созданный ЭДС индукции, препятствует
изменению магнитного потока в контуре
(см. правило
Ленца).

Электрическое
напряжение между двумя точками
электрической цепи или электрического
поля, равно работе электрического поля
по перемещению единичного положительного
заряда из одной точки в другую. В
потенциальном электрическом поле эта
работа не зависит от пути, по которому
перемещается заряд; в этом случае Э. н.
между двумя точками совпадает с разностью
потенциалов между ними.

Если поле
непотенциально, то напряжение зависит
от того пути, по которому перемещается
заряд между точками. Непотенциальные
силы, называются сторонними, действуют
внутри любого источника постоянного
тока (генератора, аккумулятора,
гальванического элемента и др.).

Под
напряжением на зажимах источника тока
всегда понимают работу электрического
поля по перемещению единичного
положительного заряда вдоль пути,
лежащего вне источника; в этом случае
Э. н. равно разности потенциалов на
зажимах источника и определяется законом
Ома: U = IR—E, где I — сила тока, R — внутреннее
сопротивление источника, а E — его
электродвижущая сила (эдс).

При разомкнутой
цепи (I = 0) напряжение по модулю равно
эдс источника. Поэтому эдс источника
часто определяют как Э. н. на его зажимах
при разомкнутой цепи.

В случае переменного
тока Э. н. обычно характеризуется
действующим (эффективным) значением,
которое представляет собой среднеквадратичное
за период значение напряжения.

Напряжение
на зажимах источника переменного тока
или катушки индуктивности измеряется
работой электрического поля по перемещению
единичного положительного заряда вдоль
пути, лежащего вне источника или катушки.

Вихревое (непотенциальное) электрическое
поле на этом пути практически отсутствует,
и напряжение равно разности потенциалов.

Электродвижущая
сила (ЭДС) — физическая величина,
характеризующая работу сторонних
(непотенциальных) сил в источниках
постоянного или переменного тока. В
замкнутом проводящем контуре ЭДС равна
работе этих сил по перемещению единичного
положительного заряда вдоль контура.

  • Наименование и
    обозначение производной единицы СИ:
  • международное
    – volt,
    V
  • русское
    – вольт,
    В
  • Выражение через
    основные и производные единицы СИ:
  • 1 V = 1 W / A

В чем основная разница между напряжением, эдс и разностью потенциалов?

В нескольких концепциях электричества идею «напряжения» или «электрического потенциала», вероятно, труднее всего понять. Это также очень сложно объяснить. Это головная боль и для ученика, и для учителя. Чтобы понять напряжение, полезно сначала немного понять его ближайшего родственника — магнетизм.

«электростатическое поле» или «электронное поле». Этот второй тип поля очень похож на магнетизм. Он невидим, у него есть линии потока, и он может притягивать и отталкивать объекты. Однако это не магнетизм, это нечто отдельное. Это напряжение.

Большинство людей знают о магнитных полях, но не об электронных полях или «полях напряжения». Частично это объясняется тем, что магнетизм объясняется в школе, но по некоторым причинам поля напряжения скрыты под названием «статическое электричество». Электронные поля никогда не упоминаются в научных учебниках для начинающих.

Это странно, так как напряжение и «статическое электричество» идут вместе. Всякий раз, когда отрицательный заряд притягивает положительный заряд, между зарядами должны существовать невидимые поля напряжения. Напряжение вызывает притяжение между противоположными зарядами; поля напряжения достигают пространства.

В действительности, «статическое» электричество не имеет ничего общего с движением (или со статичностью). Вместо этого статическое электричество связано с высоким напряжением. Разденьте коврик, и вы зарядите свое тело до нескольких тысяч вольт.

Когда вы снимаете шерстяной носок с сушилки для белья, и все волокна выходят наружу, волокна следуют за невидимыми линиями напряжения в воздухе. Волокна ткани — это «железные опилки», которые делают рисунки напряжения видимыми.

И всякий раз, когда заряды внутри проводника вынуждены течь, они движутся только потому, что их движет поле напряжения, которое проходит по длине провода. Электронные поля вызывают ускорение заряда: напряжение вызывает ток. Напряжение вызывает осушение, но оно также вызывает электрические токи в проводах.

Другой способ сказать это: токи в электрических цепях вызваны «статическим электричеством», а «статическое электричество» не обязательно является статическим. Связь между напряжением и «статическим» электричеством плохо объяснена в книгах, и это одна из главных причин, почему напряжение кажется таким сложным и загадочным.

Простая математика за «напряжением» Чтобы быть более конкретным, «Напряжение» — это способ использования чисел для описания электрического поля. Электрические поля или «электронные поля» измеряются в вольтах на расстоянии; вольт на сантиметр например.

Более сильное электронное поле имеет больше вольт на сантиметр, чем более слабое. Напряжение и электронные поля в основном одно и то же: если электронные поля похожи на склон горы, то вольт похож на различные высоты каждой отдельной точки на горе.

Склон горы может заставить валун начать катиться. То же самое можно сказать о разной высоте разных точек на горе, это просто еще один способ описать одно и то же.

Электронное поле можно рассматривать в терминах сложенных слоев эквипотенциальных поверхностей или в виде совокупностей линий потока. «Напряжение» и «силовые линии» — два способа описать одну и ту же базовую концепцию.

  • Когда у вас есть электронные поля, у вас есть напряжение. Электронные поля могут существовать в воздухе, как и напряжение. Всякий раз, когда у вас есть высокое напряжение на коротком расстоянии, у вас есть сильные электронные поля. Всякий раз, когда электронное поле притягивает или отталкивает объект, мы можем сказать, что объект управляется напряжением в пространстве вокруг объекта. магнетизм — это «то, что включает в себя магнитные поля», тогда что такое «то, что включает в себя электрические поля»?
Читайте также:  Как добиться качественного электричества от генератора

Вольтаж!

Возьмите несколько гвоздей с помощью магнита, и это пример магнетизма, затем возьмите несколько кусочков бумаги с натертым мехом воздушным шаром, и это пример напряжения. Какие три вида невидимых полей? Гравитация, магнетизм … и напряжение!

Возможно, нам следует изменить слово «Электромагнетизм» на «Напряжение магнетизма»? (Оскал!)

  • просто … Мы определяем напряжение как количество потенциальной энергии между двумя точками в цепи. Одна точка имеет больше заряда, чем другая. Эта разница в заряде между двумя точками называется напряжением и учитывает резервуар для воды на определенной высоте над землей. На дне этого бака есть шланг.
  1. При описании напряжения, тока и сопротивления распространенной аналогией является резервуар для воды. В этой аналогии заряд представлен количеством воды, напряжение представлено давлением воды, а ток представлен потоком воды. Так что для этой аналогии, помните:
  • Water = ChargePressure = VoltageFlow = ТекущийЭлектромоторная сила
  1. Что такое электродвижущая сила? Разность потенциалов между двумя выводами ячейки называется электродвижущей силой в разомкнутой цепи. Электродвижущая сила всегда больше разности потенциалов. Электродвижущая сила не зависит от сопротивления цепи. Электродвижущая сила создает разность потенциалов во всей цепи.

Электродвижущая сила

У этого термина существуют и другие значения, см. Сила (значения).

Классическая электродинамика
Электричество · Магнетизм
Электростатика
Закон Кулона Теорема Гаусса Электрический дипольный момент Электрический заряд Электрическая индукция Электрическое поле Электростатический потенциал

Магнитостатика
Закон Био — Савара — Лапласа Закон Ампера Магнитный момент Магнитное поле Магнитный поток Магнитная индукция

Электродинамика
Векторный потенциал Диполь Потенциалы Лиенара — Вихерта Сила Лоренца Ток смещения Униполярная индукция Уравнения Максвелла Электрический ток Электродвижущая сила Электромагнитная индукция Электромагнитное излучение Электромагнитное поле

Электрическая цепь
Закон Ома Законы Кирхгофа Индуктивность Радиоволновод Резонатор Электрическая ёмкость Электрическая проводимость Электрическое сопротивление Электрический импеданс

Ковариантная формулировка
Тензор электромагнитного поля Тензор энергии-импульса 4-потенциал 4-ток

Известные учёные
Генри Кавендиш Майкл Фарадей Никола Тесла Андре-Мари Ампер Густав Роберт Кирхгоф Джеймс Клерк Максвелл Оливер Хевисайд Генрих Рудольф Герц Альберт Абрахам Майкельсон Роберт Эндрюс Милликен

См. также: Портал:Физика

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил (то есть любых сил, кроме электростатических и диссипативных) действующих в квазистационарных цепях постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура[1][2].

По аналогии с напряжённостью электрического поля вводят понятие напряжённость сторонних сил

E

e
x

{displaystyle {vec {E}}_{ex}}

, под которой понимают векторную физическую величину, равную отношению сторонней силы, действующей на пробный электрический заряд к величине этого заряда. Тогда в замкнутом контуре

L

{displaystyle L}

ЭДС будет равна:

E

=

L

E

e
x

d
l

,

{displaystyle {mathcal {E}}=oint limits _{L}{vec {E}}_{ex}cdot {vec {dl}},}

где

d
l

{displaystyle {vec {dl}}}

 — элемент контура.

ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах.
Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке.

ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории.

Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока вне самого́ источника равна нулю.

Эдс и закон ома

Электродвижущая сила источника связана с электрическим током, протекающим в цепи, соотношениями закона Ома. Закон Ома для неоднородного участка цепи имеет вид[1]:

φ

1

φ

2

+

E

=
I
R
,

{displaystyle varphi _{1}-varphi _{2}+{mathcal {E}}=IR,}

где

φ

1

φ

2

{displaystyle varphi _{1}-varphi _{2}}

— разность между значениями потенциала в начале и в конце участка цепи,

I

{displaystyle I}

— сила тока, текущего по участку, а

R

{displaystyle R}

— сопротивление участка.

Если точки 1 и 2 совпадают (цепь замкнута), то

φ

1

φ

2

=
0

{displaystyle varphi _{1}-varphi _{2}=0}

и предыдущая формула переходит в формулу закона Ома для замкнутой цепи[1]:

E

=
I
R
,

{displaystyle {mathcal {E}}=IR,}

где теперь

R

{displaystyle R}

полное сопротивление всей цепи.

В общем случае полное сопротивление цепи складывается из сопротивления внешнего по отношению к источнику тока участка цепи (

R

e

{displaystyle R_{e}}

) и внутреннего сопротивления самого́ источника тока (

r

{displaystyle r}

). С учётом этого следует:

E

=
I

R

e

+
I
r
.

{displaystyle {mathcal {E}}=IR_{e}+Ir.}

Эдс источника тока

Если на участке цепи не действуют сторонние силы (однородный участок цепи) и, значит, источника тока на нём нет, то, как это следует из закона Ома для неоднородного участка цепи, выполняется:

φ

1

φ

2

=
I
R
.

{displaystyle varphi _{1}-varphi _{2}=IR.}

Значит, если в качестве точки 1 выбрать анод источника, а в качестве точки 2 — его катод, то для разности между потенциалами анода

φ

a

{displaystyle varphi _{a}}

и катода

φ

k

{displaystyle varphi _{k}}

можно записать:

φ

a

φ

k

=
I

R

e

,

{displaystyle varphi _{a}-varphi _{k}=IR_{e},}

где как и ранее

R

e

{displaystyle R_{e}}

— сопротивление внешнего участка цепи.

Из этого соотношения и закона Ома для замкнутой цепи, записанного в виде

E

=
I

R

e

+
I
r

{displaystyle {mathcal {E}}=IR_{e}+Ir}

нетрудно получить

φ

a

φ

k

E

=

R

e

R

e

+
r

{displaystyle {frac {varphi _{a}-varphi _{k}}{mathcal {E}}}={frac {R_{e}}{R_{e}+r}}}

и затем

φ

a

φ

k

=

R

e

R

e

+
r

E

.

{displaystyle varphi _{a}-varphi _{k}={frac {R_{e}}{R_{e}+r}}{mathcal {E}}.}

Из полученного соотношения следуют два вывода:

  1. Во всех случаях, когда по цепи течёт ток, разность потенциалов между клеммами источника тока

    φ

    a

    φ

    k

    {displaystyle varphi _{a}-varphi _{k}}

    меньше, чем ЭДС источника.

  2. В предельном случае, когда

    R

    e

    {displaystyle R_{e}}

    бесконечно (цепь разорвана), выполняется

    E

    =

    φ

    a

    φ

    k

    .

    {displaystyle {mathcal {E}}=varphi _{a}-varphi _{k}.}

Таким образом, Эдс источника тока равна разности потенциалов между его клеммами в состоянии, когда источник отключён от цепи[1].

Эдс индукции

Причиной возникновения электродвижущей силы в замкнутом контуре может стать изменение потока магнитного поля, пронизывающего поверхность, ограниченную данным контуром. Это явление называется электромагнитной индукцией. Величина Эдс индукции в контуре определяется выражением

E

=

d
Φ

d
t

,

{displaystyle {mathcal {E}}=-{frac {dPhi }{dt}},}

где

Φ

{displaystyle Phi }

— поток магнитного поля через замкнутую поверхность, ограниченную контуром.

Знак «−» перед выражением показывает, что индукционный ток, созданный Эдс индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца).

В свою очередь причиной изменения магнитного потока может быть как изменение магнитного поля, так и движение контура в целом или его отдельных частей.

Неэлектростатический характер ЭДС

Внутри источника ЭДС ток течёт в направлении, противоположном нормальному.

Это невозможно без дополнительной силы неэлектростатической природы, преодолевающей силу электрического отталкивания

Как показано на рисунке, электрический ток, нормальное направление которого — от «плюса» к «минусу», внутри источника ЭДС (например, внутри гальванического элемента) течёт в противоположном направлении.

Направление от «плюса» к «минусу» совпадает с направлением электростатической силы, действующей на положительные заряды.

Поэтому для того, чтобы заставить ток течь в противоположном направлении, необходима дополнительная сила неэлектростатической природы (центробежная сила, сила Лоренца, силы химической природы, сила со стороны вихревого электрического поля) которая бы преодолевала силу со стороны электростатического поля. Диссипативные силы, хотя и противодействуют электростатическому полю, не могут заставить ток течь в противоположном направлении, поэтому они не входят в состав сторонних сил, работа которых используется в определении ЭДС.

Сторонние силы

Сторонними силами называются силы, вызывающие перемещение электрических зарядов внутри источника постоянного тока против направления действия сил электростатического поля.

Например, в гальваническом элементе или аккумуляторе сторонние силы возникают в результате электрохимических процессов, происходящих на границе соприкосновения электрода с электролитом; в электрическом генераторе постоянного тока сторонней силой является сила Лоренца[3].

См. также

  • Правила Кирхгофа

Примечания

  1. 1 2 3 4 Сивухин Д. В. Общий курс физики. — М.: Физматлит, МФТИ, 2004. — Т. III. Электричество. — С. 193—194. — 656 с. — ISBN 5-9221-0227-3.
  2. Калашников С. Г. Общий курс физики. — М.: Гостехтеориздат, 1956. — Т. II. Электричество. — С. 146, 153. — 664 с.
  3. Кабардин О. Ф. Физика. — М., Просвещение, 1985. — Тираж 754 000 экз. — с. 131
В этой статье не хватает ссылок на источники информации.Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.Эта отметка установлена 19 июня 2018 года.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock
detector