Датчики освещенности (освещения), построенные на базе фоторезисторов, довольно часто используются в реальных ардуино проектах. Они относительно просты, не дороги, их легко найти и купить в любом интернет-магазине.
Фоторезистор ардуино позволяет контролировать уровень освещенности и реагировать на его изменение.
В этой статье мы рассмотрим, что такое фоторезистор, как работает датчик освещенности на его основе, как правильно подключить датчик в платам Arduino.
Фоторезистор ардуино и датчик освещенности
В отличие от обычного резистора, фоторезистор может менять свое сопротивление в зависимости от уровня окружающего освещения. Это означает, что в электронной схеме будут постоянно меняться параметры, в первую очередь нас интересует напряжение, падающее на фоторезисторе. Фиксируя эти изменения напряжения на аналоговых пинах ардуино, мы можем менять логику работы схемы, создавая тем самым адаптирующиеся под вешние условия устройства.
Какие фоторезисторы можно купить в интернет-магазинах
Самый популярный и доступный вариант датчика на рынке – это модели массового выпуска китайских компаний, клоны изделий производителя VT. Там не всегда можно разораться, кто и что именно производит тот или иной поставщик, но для начала работы с фоторезисторами вполне подойдет самый простой вариант.
Начинающему ардуинщику можно посоветовать купить готовый фотомодуль, который выглядит вот так:
На этом модуле уже есть все необходимые элементы для простого подключения фоторезистора к плате ардуино. В некоторых модулях реализована схема с компаратором и доступен цифровой выход и подстроечный резистор для управления.
Российскому радиолюбителю можно посоветовать обратить на российский датчик ФР. Встречающиеся в продаже ФР1-3, ФР1-4 и т.п. — выпускались ещё в союзовские времена. Но, несмотря на это, ФР1-3 – более точная деталь. Из этого следует и разница в цене За ФР просят не более 400 рублей. ФР1-3 будет стоить больше тысячи рублей за штуку.
Маркировка фоторезистора
Современная маркировка моделей, выпускаемых в России, довольно простая. Первые две буквы — ФотоРезистор, цифры после чёрточки обозначают номер разработки. ФР -765 — фоторезистор, разработка 765. Обычно маркируется прямо на корпусе детали
У датчика VT в схеме маркировке указаны диапазон сопротивлений. Например:
- VT83N1 — 12-100кОм (12K – освещенный, 100K – в темноте)
- VT93N2 — 48-500кОм (48K – освещенный, 100K – в темноте).
Иногда для уточнения информации о моделях продавец предоставляет специальный документ от производителя. Кроме параметров работы там же указывается точность детали.
У всех моделей диапазон чувствительности расположен в видимой части спектра. Собирая датчик света нужно понимать, что точность срабатывания — понятие условное.
Даже у моделей одного производителя, одной партии, одной закупки отличаться она может на 50% и более.
На заводе детали настраиваются на длину волны от красного до зелёного света. Большинство при этом «видит» и инфракрасное излучение. Особо точные детали могут улавливать даже ультрафиолет.
Достоинства и недостатки датчика
Основным недостатком фоторезисторов является чувствительность к спектру. В зависимости от типа падающего света сопротивление может меняется на несколько порядков.
К минусам также относится низкая скорость реакции на изменение освещённости. Если свет мигает — датчик не успевает отреагировать.
Если же частота изменения довольно велика — резистор вообще перестанет «видеть», что освещённость меняется.
К плюсам можно отнести простоту и доступность. Прямое изменение сопротивления в зависимости от попадающего на неё света позволяет упростить электрическую схему подключения. Сам фоторезистор очень дешев, входит в состав многочисленных наборов и конструкторов ардуино, поэтому доступен практически любому начинающему ардуинщику.
Подключение фоторезистора к ардуино
В проектах arduino фоторезистор используется как датчик освещения. Получая от него информацию, плата может включать или выключать реле, запускать двигатели, отсылать сообщения. Естественно, при этом мы должны правильно подключить датчик.
Схема подключения датчика освещенности к ардуино довольна проста. Если мы используем фоторезистор, то в схеме подключения датчик реализован как делитель напряжения.
Одно плечо меняется от уровня освещённости, второе – подаёт напряжение на аналоговый вход. В микросхеме контроллера это напряжение преобразуется в цифровые данные через АЦП. Т.к.
сопротивление датчика при попадании на него света уменьшается, то и значение падающего на нем напряжения будет уменьшаться.
В зависимости от того, в каком плече делителя мы поставили фоторезистор, на аналоговый вход будет подаваться или повышенное или уменьшенное напряжение.
В том случае, если одна нога фоторезистора подключена к земле, то максимальное значение напряжения будет соответствовать темноте (сопротивление фоторезистора максимальное, почти все напряжение падает на нем), а минимальное – хорошему освещению (сопротивление близко к нулю, напряжение минимальное). Если мы подключим плечо фоторезистора к питанию, то поведение будет противоположным.
Сам монтаж платы не должен вызывать трудностей. Так как фоторезистор не имеет полярности, подключить можно любой стороной, к плате его можно припаять, подсоединить проводами с помощью монтажной платы или использовать обычные клипсы (крокодилы) для соединения.
Источником питания в схеме является сам ардуино. Фоторезистор подсоединяется одной ногой к земле, другая подключается к АЦП платы (в нашем примере – АО). К этой же ноге подключаем резистор 10 кОм.
Естественно, подключать фоторезистор можно не только на аналоговый пин A0, но и на любой другой.
Несколько слов относительно дополнительного резистора на 10 К. У него в нашей схеме две функции: ограничивать ток в цепи и формировать нужное напряжение в схеме с делителем.
Ограничение тока нужно в ситуации, когда полностью освещенный фоторезистор резко уменьшает свое сопротивление. А формирование напряжения – для предсказуемых значений на аналоговом порту.
На самом деле для нормальной работы с нашими фоторезисторами хватит и сопротивления 1К.
Меняя значение резистора мы можем “сдвигать” уровень чувствительности в “темную” и “светлую” сторону. Так, 10 К даст быстрое переключение наступления света. В случае 1К датчик света будет более точно определять высокий уровень освещенности.
Если вы используете готовый модуль датчика света, то подключение будет еще более простым. Соединяем выход модуля VCC с разъемом 5В на плате, GND – c землей. Оставшиеся выводы соединяем с разъемами ардуино.
Если на плате представлен цифровой выход, то отправляем его на цифровые пины. Если аналоговый – то на аналоговые. В первом случае мы получим сигнал срабатывания – превышения уровня освещенности (порог срабатывания может быть настроен с помощью резистора подстройки). С аналоговых же пинов мы сможем получать величину напряжения, пропорциональную реальному уровню освещенности.
Пример скетча датчика освещенности на фоторезисторе
Мы подключили схему с фоторезистором к ардуино, убедились, что все сделали правильно. Теперь осталось запрограммировать контроллер.
Написать скетч для датчика освещенности довольно просто. Нам нужно только снять текущее значение напряжения с того аналогового пина, к которому подключен датчик. Делается это с помощью известной нам всем функции analogRead(). Затем мы можем выполнять какие-то действия, в зависимости от уровня освещенности.
- Давайте напишем скетч для датчика освещенности, включающего или выключающего светодиод, подключенный по следующей схеме.
- Алгоритм работы таков:
- Определяем уровень сигнала с аналогового пина.
- Сравниваем уровень с пороговым значением. Максимально значение будет соответствовать темноте, минимальное – максимальной освещенности. Пороговое значение выберем равное 300.
- Если уровень меньше порогового – темно, нужно включать светодиод.
- Иначе – выключаем светодиод.
#define PIN_LED 13
#define PIN_PHOTO_SENSOR A0
void setup() {
Serial.begin(9600);
pinMode(PIN_LED, OUTPUT);
}
void loop() {
int val = analogRead(PIN_PHOTO_SENSOR);
Serial.println(val);
if (val < 300) {
digitalWrite(PIN_LED, LOW);
} else {
digitalWrite(PIN_LED, HIGH);
}
}
Прикрывая фоторезистор (руками или светонепроницаемым предметом), можем наблюдать включение и выключение светодиода. Изменяя в коде пороговый параметр, можем заставлять включать/выключать лампочку при разном уровне освещения.
При монтаже постарайтесь расположить фоторезистор и светодиод максимально далеко друг от друга, чтобы на датчик освещенности попадало меньше света от яркого светодиода.
Датчик освещенности и плавное изменение яркости подсветки
Можно модифицировать проект так, чтобы в зависимости от уровня освещенности менялась яркость светодиода. В алгоритм мы добавим следующие изменения:
- Яркость лампочки будем менять через ШИМ, посылая с помощью analogWrite() на пин со светодиодом значения от 0 до 255.
- Для преобразования цифрового значения уровня освещения от датчика освещенности (от 0 до 1023) в диапазон ШИМ яркости светодиода (от 0 до 255) будем использовать функцию map().
Пример скетча:
#define PIN_LED 10
#define PIN_PHOTO_SENSOR A0
void setup() {
Serial.begin(9600);
pinMode(PIN_LED, OUTPUT);
}
void loop() {
int val = analogRead(PIN_PHOTO_SENSOR);
Serial.println(val);
int ledPower = map(val, 0, 1023, 0, 255); // Преобразуем полученное значение в уровень PWM-сигнала. Чем меньше значение освещенности, тем меньше мощности мы должны подавать на светодиод через ШИМ.
analogWrite(PIN_LED, ledPower); // Меняем яркость
}
В случае другого способа подключения, при котором сигнал с аналогового порта пропорционален степени освещенности, надо будет дополнительно «обратить» значение, вычитая его из максимального:
int val = 1023 – analogRead(PIN_PHOTO_RESISTOR);
Схема датчика освещения на фоторезисторе и реле
Примеры скетча для работы с реле приведены в статье, посвященной программированию реле в ардуино. В данном случае, нам не нужно делать сложных телодвижений: после определения «темноты» мы просто включаем реле, подавай на его пин соответствующее значение.
#define PIN_RELAY 10
#define PIN_PHOTO_SENSOR A0
void setup() {
pinMode(PIN_RELAY, OUTPUT);
digitalWrite(PIN_RELAY, HIGH);
}
void loop() {
int val = analogRead(PIN_PHOTO_SENSOR);
if (val < 300) {
// Светло, выключаем реле
digitalWrite(PIN_RELAY, HIGH);
} else {
// Темновато, включаем лампочку
digitalWrite(PIN_RELAY, LOW);
}
}
Заключение
Проекты с применением датчика освещенности на базе фоторезистора достаточно просты и эффектны. Вы можете реализовать множество интересных проектов, при этом стоимость оборудования будет не высока. Подключение фоторезистора осуществляется по схеме делителя напряжения с дополнительным сопротивлением.
Датчик подключается к аналоговому порту для измерения различных значений уровня освещенности или к цифровому, если нам важен лишь факт наступления темноты. В скетче мы просто считываем данные с аналогового (или цифрового) порта и принимаем решение, как реагировать на изменения.
Будем надеяться, что теперь в ваших проектах появятся и такие вот простейшие «глаза».
Датчик света (фотореле) для уличного освещения
Владельцев частных домов при благоустройстве участка волнует вопрос, как сделать автоматическое включение света в сумерки и выключение его на рассвете. Для этого есть два устройства — фотореле и астротаймер. Первое устройство более простое и дешевое, второе — сложнее и дороже. Более подробно поговорим о фотореле для уличного освещения.
Устройство и принцип действия
Это устройство имеет множество названий. Самое распространенное — фотореле, но называют еще фотоэлемент, датчик света и сумерек, фотодатчик, фотосэнсор, сумеречный или светоконтролирующий выключатель, датчик освещенности или день-ночь. В общем, названий много, но суть от этого не меняется — устройство позволяет в автоматическом режиме включать свет в сумерки и выключать на рассвете.
Схема фотореле для уличного освещения на фоторезисторе
Работа устройства основана на способности некоторых элементов изменять свои параметры под воздействием солнечного света. Чаще всего используют фоторезисторы, фототранзисторы и фотодиоды.
Вечером, при уменьшении освещенности, параметры светочувствительных элементов начинают меняться. Когда изменения достигнут определенной величины, контакты реле смыкаются, подавая питание на подключенную нагрузку.
На рассвете изменения идут в обратном направлении, контакты размыкаются, свет гаснет.
Характеристики и выбор
В первую очередь выбирают напряжение, с которым будет работать датчик света: 220 В или 12 В. Следующий параметр — класс защиты. Так как устройство устанавливается на улице, он должен быть не ниже IP44 (цифры могут быть больше, меньше — нежелательно).
Это значит, что внутрь устройства не могут попасть предметы размером более 1 мм, а также что водяные брызги ему не страшны. Второе, на что стоит обратить внимание — на температурный режим эксплуатации.
Ищите такие варианты, которые с запасом перекрывают средние показатели в вашем регионе как по плюсовой, так и по минусовой температуре.
Подбирать модель фотореле также необходимо по мощности подключаемых к нему ламп (выходная мощность) и току нагрузки. Оно, конечно, может «тянуть» нагрузку немного больше, но при этом могут быть проблемы. Так что лучше брать даже с некоторым запасом. Это были обязательные параметры, по которым надо выбирать фотореле для уличного освещения. Есть еще несколько дополнительных.
Пример характеристик фотореле для уличного освещения
В некоторых моделях есть возможность подстроить порог срабатывания — сделать фотодатчик более или менее чувствительным. Уменьшать чувствительность стоит при выпадении снега. В этом случае отраженный от снега свет может быть воспринят как рассвет. В результате свет будет то включаться, то отключаться. Такое представление вряд ли понравится.
Обратите внимание на пределы регулировки чувствительности. Они могут быть больше или меньше. Например, у фотореле AWZ-30 белорусского производства этот параметр — 2-100 Лк, у фотоэлемента P02 диапазон подстройки 10-100 Лк.
Задержка срабатывания. Для чего нужна задержка? Для исключения ложных включений/отключений света. Например, ночью на фотореле попал свет фар проезжающего автомобиля. Если задержка срабатывания мала, свет отключится. Если она достаточна — хотя-бы 5-10 секунд, то этого не произойдет.
Выбор места установки
Для корректной работы фотореле важно правильно выбрать его местоположение. Необходимо учесть несколько факторов:
- На него должен падать солнечный свет, то есть он должен быть под открытым небом.
- Ближайшие источники искусственного света (окна, лампы, фонари и т.д.) должны находится как можно дальше.
- Не желательно чтобы на него попадал свет фар.
- Желательно расположить его не очень высоко — для удобства обслуживания (надо периодически протирать поверхность от пыли и смахивать снег).
Чтобы светочувствительные автоматы работали корректно, надо правильно выбрать местоположение
Как видите при организации автоматического освещения на улице выбрать место для установки фотореле — не самая простая задача. Иногда приходится переносить его несколько раз, пока найдешь приемлемое положение.
Часто, если датчик света используют для включения фонаря на столбе, фотореле стараются расположить там же. Это совершенно не обязательно и очень неудобно — счищать пыль или снег приходится довольно часто и каждый раз залезать на столб не очень весело.
Само фотореле можно разместить на стене дома, например, а к светильнику дотянуть кабель питания. Это наиболее удобный вариант.
Схемы подключения
Схема подключения фотореле для уличного освещения проста: на вход устройства заводится фаза и ноль, с выхода фаза подается на нагрузку (фонари), а ноль (минус) на нагрузку идет от автомата или с шины.
Схема подключения фотореле для освещения (фонаря)
Если делать все по правилам, соединение проводов необходимо делать в распределительной (монтажной коробке). Выбираете герметичную модель для расположения на улице, монтируете в доступном месте. Как подключить фотореле к освещению на улице в этом случае — на схеме ниже.
Подключение фотодатчика через распределительную коробку
Если включать/отключать необходимо мощный фонарь на столбе, в конструкции которого есть дросселя, лучше в схему добавить пускатель (контактор). Он рассчитан на частое включение и выключение, нормально переносит пусковые токи.
Схема подключения датчика день-ночь с пускателем
Если свет должен включаться только на время нахождения человека (в уличном туалете, возле калитки), к фотореле добавляют датчик движения. В такой связке лучше сначала поставить светочувствительный выключатель, а после него — датчик движения. При таком построении датчик движения будет срабатывать только в темное время суток.
Схема подключения фотореле с датчиком движения
Как видите, схемы несложные, вполне можно справиться своими руками.
Особенности подключения проводов
Фотореле любого производителя имеет три провода. Один из них — красный, другой — синий (может быть темно-зеленым) и третий может быть любого цвета, но обычно черный или коричневый. При подключении стоит помнить:
- красный провод всегда идет на лампы:
- к синему (зеленому) подключается ноль (нейтраль) от питающего кабеля;
- к черному или коричневому подается фаза.
Если посмотрите на все выше приведенные схемы, то увидите, что они нарисованы с соблюдением этих правил. Все, больше никаких сложностей. Подключив так провода (не забудьте, что нулевой провод также надо подключить на лампу) вы получите рабочую схему.
Как настроить фотореле для уличного освещения
Настраивать датчик освещенности необходимо после установки и подключения в сеть. Для регулировки пределов срабатывания в нижней части корпуса имеется небольшой пластиковый поворотный диск. Его вращением и задается чувствительность.
Найдите на корпусе подобный регулятор — им настраивается чувствительность фотореле
Чуть выше на корпусе есть стрелочки, которыми обозначено, в какую сторону крутить для увеличения и уменьшения чувствительности фотореле (влево- уменьшить, вправо — увеличить).
Для начала выставляете наименьшую чувствительность — загоняете регулятор в крайнее правое положение. Вечером, когда освещенность будет такой, что вы решите, что уже надо бы включить свет, начинаете подстройку. Надо плавно поворачивать регулятор влево до тех пор, пока не включится свет. На этом можно считать, что настройка фотореле для уличного освещения закончена.
Астротаймер
Астрономический таймер (астротаймер) — это другой способ автоматизировать уличное освещение. Принцип его работы отличается от фотореле, но он тоже включает свет вечером и выключает его утром. Управление светом на улице происходит по времени.
В данном устройстве заложены данные про то, в какое время темнеет/светает в каждом регионе в каждый сезон/день. При настройке астротаймера вводятся GPS координаты его установки, выставляется дата и текущее время.
Согласно заложенной программе устройство и работает.
Астротаймер — второй способ автоматизировать свет на участке
Чем оно удобнее?
- Оно не зависит от погоды. В случае с установкой фотореле велика вероятность ложного срабатывания — в пасмурную погоду свет может включаться ранним вечером. При попадании на фотореле света он может гасить свет посреди ночи.
- Устанавливать астротаймер можно в доме, в щитке, в любом месте. Ему не нужен свет.
- Есть возможность сдвигать время включения/выключения на 120-240 минут (зависит от модели) относительно заданного времени. То есть, вы сами сможете выставить время так, как вам удобно.
Недостаток — высокая цена. Во всяком случае, модели, которые есть в торговой сети, стоят довольно солидных денег. Но можно купить в Китае намного дешевле, правда, как он будет работать — вопрос.
Три простые схемы датчиков освещенности
Датчики освещенности или так называемые фотодатчики, по своей сути, устройства несложные.
При желании простое изделие такого рода можно вполне собрать самостоятельно, имея элементарные навыки чтения электронных схем и умение держать в руках паяльник.
Подобное устройство может управлять, например, включением или выключением какого-нибудь бытового прибора в зависимости от освещенности того места, где установлен датчик.
Так или иначе, схемы фотодатчиков весьма просты. Три из них, давно зарекомендовавшие себя и считающиеся классическими, мы и рассмотрим ниже. С их помощью можно будет легко автоматизировать то, что может нуждаться в такой автоматизации.
Сигнализация при затемнении с функцией ручного сброса
На данном рисунке представлена классическая и очень простая схема, могущая стать основой для системы охранной сигнализации, работающей по принципу детектора падающего светового потока:
В качестве индикатора срабатывания здесь используется светодиод (обозначенный как LED), который начинает светиться в момент, когда на фоторезистор PR не попадает достаточного количества света. Свет может быть естественным или искусственным, в зависимости от того места, где будет установлено данное устройство.
Если датчик установить в жилом помещении, то это будет, например, сигнализация контроля определенной зоны в доме. Если же установку произвести на улице, то к срабатыванию устройства побудит либо наступление сумерек, либо в светлое время суток — пересечение рабочей зоны датчика посторонним движущимся объектом.
Схема работает очень просто.
Пока на датчик PR попадает достаточно света, его электрическое сопротивление постоянному току очень мало, следовательно в цепи постоянного тока данного устройства при указанном напряжении питания (от 10 до 18 вольт) вместе с резистором R1 образован такой делитель напряжения, что на элементе PR падение напряжения настолько мало, что этого напряжения не хватит чтобы тиристор VS перешел в проводящее состояние.
Конденсатор C1 практически шунтирован элементом PR. Но как только световой поток значительно уменьшится или прервется, сопротивление чувствительного элемента PR тут же вернется к значению в несколько мегаом! В этот момент параметры делителя напряжения радикально изменятся, напряжение повысится, и от источника питания U через резистор R1 начнет активно заряжаться конденсатор C1.
Как только напряжение на конденсаторе C1 достигнет напряжения отпирания тиристора VS (в районе 1 вольта), он тут же перейдет в проводящее состояние и светодиод LED получит питание через ограничительный резистор R2.
Чтобы переключить датчик в исходное состояние достаточно замкнуть кнопку S (здесь может быть установлена кнопка без фиксации или микропереключатель), а затем отпустить ее — ток через тиристор прекратится, он снова будет «ожидать», пока датчик освещенности PR не окажется затемнен.
Принципиально вместо светодиода LED с ограничительным резистором R2 в схему можно установить слаботочное электромагнитное реле с током срабатывания в районе 20 мА и с подходящим напряжением питания.
Очевидно, если напряжение питания сделать больше или меньше, то и включающееся при отпирании тиристора устройство также должно быть соответствующим, то есть рассчитанным на установленное на входе схемы напряжение.
Тиристор в принципе может быть любым из тех, что применяют в устройствах плавного пуска коллекторных двигателей или в диммерах, главное чтобы параметры тиристора по току и нарпяжению обеспечивали запас относительно параметров нагрузки.
Фотодатчик PR при необходимости можно составить из нескольких соединенных параллельно элементов, с тем чтобы повысить его чувствительность. Конденсатор С1 лучше выбрать пленочный.
Конденсатор фильтра по питанию C2 – чем больше — тем лучше, однако при небольшой мощности потребителя, такого как светодиод или реле, достаточно и 100 мкФ.
Питание схемы осуществляется от блока питания или от набора аккумуляторов.
Датчик освещенности с регулировкой чувствительности на базе операционного усилителя
Данная схема, в отличие от предыдущей, чуть-чуть усложнена. Сюда добавлен компаратор, включенный по схеме операционного усилителя с петлей положительной обратной связи, получаемой при помощи внедренного в схему резистора R4. Операционный усилитель DA с резистором R4 защищен таким образом от паразитных колебаний и самовозбуждения.
Постоянное питание 12 вольт подается на слаботочное реле, срабатывание которого наступает в момент снижения освещенности чувствительного элемента PR, что приводит к коммутации цепи исполнительного устройства. Чувствительность фотодатчика, построенного по данной схеме, настраивается регулировкой подстроечного резистора R3.
Для защиты транзистора VT от индуктивных выбросов с обмотки реле К (в момент резкого размыкания цепи транзистором VT), в схему включен защитный диод VD. Операционный усилитель может быть использован любой подходящий. А за подавление высокочастотных помех по питающему напряжению отвечает конденсатор C, емкости которого в 47 нФ вполне достаточно.
Итак, пока на чувствительный элемент PR датчика освещенности падает достаточное количество света, его сопротивление мало. Соответственно делитель напряжения, образованный элементами PR и R1 дает на входе №2 операционного усилителя (на неинвертирующем его входе) потенциал больший, чем на входе №3 (на инвертирующем входе операционного усилителя).
В таком состоянии на выходе операционного усилителя будет минимальный уровень напряжения и транзистор VT не откроется, так как напряжение (определяемое делителем на резисторах R5 и R6) и ток его базы (ограничиваемый резистором R5) находятся на уровне нуля. В такой ситуации обмотка реле К не получает питания.
Как только освещенность элемента PR окажется настолько слабой, что его сопротивление повысится до такой степени, что потенциал на входе №2 операционного усилителя окажется ниже потенциала на его входе №1, в этот момент на выходе ОУ появится напряжение высокого уровня, которое приведет к отпиранию транзистора VT и к питанию через него обмотки реле К, коммутирующего исполнительное устройство. Исполнительным устройством может выступать лампа, сирена, электрический замок и т.д.
Фотореле на 555 таймере
Для включения ночного освещения на территории приусадебного участка или возле подъезда, отлично подойдет это несложное устройство на базе популярной микросхемы 555.
Когда на чувствительный фоторезистор PR падает достаточное количество света, его сопротивление сильно снижено, так что через делитель напряжения на резисторе R1 и сопротивлении элемента PR, на базу транзистора VT поступает очень слабый ток, недостаточный для отпирания данного транзистора.
Если освещенность уменьшается, сопротивление PR возрастает, и напряжение и ток базы транзистора VT увеличиваются, что приводит в свою очередь к тому, что транзистор VT переходит в проводящее состояние. Обмотка реле К1 активируется и коммутирует тиристор VS анодом к плюсовой шине питания.
Таймер 555 запускается, и на выводе №3 данной микросхемы появляется напряжение 10,5 В. Данное напряжение способно питать обмотку маломощного реле К2 (с током потребления обмотки до 250 мА).
Реле К2 коммутирует нагрузку, например лампу системы освещения во дворе и т.п. Главное условие — чтобы реле К2 допускало пропускание через себя номинального тока нагрузки и при этом не перегревалось. При восходе солнца лампа погаснет (по принципу, аналогичному схеме №2)
Характеристики пассивных и активных элементов, приведенных на данных принципиальных схемах, подбираются исходя из величины напряжения и возможностей источника питания, а также в соответствии с параметрами нагрузки, включение и выключение которой призвана автоматизировать та или иная собираемая схема.
Датчики автоматического управления освещением
Содержание:
Автоматическое управление освещением не только упрощает жизнь и экономит электроэнергию, но и во многом увеличивает безопасность как вашего жилья, так и любого другого объекта. Однако выбор датчиков для автоматического включения света введёт в ступор начинающего электрика или просто домашнего мастера. В этой статье мы рассмотрим какими они бывают.
Датчики для автоматического управления освещением можно классифицировать по типу срабатывания:
- Датчики освещенности. Включают свет, когда на улице темнеет. Преимуществом является то, что не будет ложных срабатываний в светлое время суток, а недостаток один – бесполезный расход электроэнергии при освещении, когда рядом нет людей.
- Акустические датчики. Реагируют на звуки и шумы поблизости, например, на шаги и голос.
- Датчики движения или присутствия. Срабатывают, когда кто-то проходит рядом или появляется в поле зрения другим.Что и является преимуществом — свет включается только тогда, когда есть движение в поле зрения датчика, но это же и недостаток — нужно предусмотреть возможность его отключения днём (и не забывать включать его ночью).
- Комбинированные устройства срабатывают по двум вышеперечисленным факторам. Например, комбинированный датчик движения включает освещение при наличии движения в его зоне контроля только при недостаточной освещенности, а при достаточном уровне освещенности включение света происходить не будет, таким образом устраняется главный недостаток датчика движения.
Из приведенного выше обзора можно сделать следующие выводы:
Для решения проблемы с автоматическим включением и отключением света нужно определиться должен ли быть свет включен постоянно в темное время суток или должен включаться и выключаться в темноте при появлении человека или другого объекта.
У датчиков одного типа может быть разный принцип работы, от чего и зависит точность его срабатывания. Рассмотрим их подробнее.
Датчики освещенности или как их ещё называют фотореле нашли широкое применение в области управления наружным освещением. Например, там, где желательно чтобы свет горел постоянно. Принцип их работы основан на том что светочувствительный элемент изменяет свою проводимость в зависимости от степени освещенности. В качестве такого элемента используют:
- Фоторезисторы (чаще и дешевле всего);
- Фотодиоды;
- Фототранзисторы.
Все три типа светочувствительных элементов объединяет то, что их проводимость возрастает вместе с освещенностью. Простым языком, они проводят ток тогда, когда на них попадает свет. Отличием является лишь чувствительность.
Сигнал с датчика освещения приходит на усилитель, который в свою очередь управляет силовым коммутационным прибором – электромагнитным реле или симистором. В дешевых малогабаритных устройствах в качестве усилителя используется 1 транзистор.
А в дорогих – микросхемы.
Чаще всего их называют «фотореле» или «сумеречный выключатель». Распространенные модели этих датчиков маркируются так – ФР-601, ФР-01 и т.д.
По конструкции фотореле выпускают трёх типов:
- Со встроенным датчиком;
- С выносным (внешним) датчиком (одним или несколькими);
- Встроенные в светильники.
А по типу монтажа они могут быть:
- Для установки на DIN-рейку электрощита;
- Для монтажа на стену, например с кронштейном.
Датчики движения используют для управления светом в подъезде, на входе в дом и в других местах. Он будет реагировать на движения, как ночью, так и днём – независимо от освещенности
Принцип работы датчика движения зависит от его типа. Они бывают трёх видов:
- Инфракрасные (ИК);
- Ультразвуковые (УЗ);
- Микроволновые.
4.1 Инфракрасные датчики движения
В качестве чувствительного элемента используются т.н. PIR-сенсоры (пироэлектрический датчик). Это пассивные устройства – они ничего не излучают, а лишь воспринимают излучения окружающей среды:
Для того, чтобы сформировать направленное поле зрения используются линзы Френеля. Они наносятся на одной пластине, что легко заметить, если посмотреть на внешний вид такого устройства. Количество линз в мультилинзе может варьироваться в районе 20-60 штук, в некоторых случаях и более.
- Датчики с круговым полем зрения содержат в себе несколько чувствительных элементов и мультилинзу в форме купола или его сектора.
- Достоинства ИК датчиков:
- Низкая стоимость;
- Распространённость;
- Простота настройки.
Недостатки ИК датчиков:
- Слепнут в жаркое время года – возможны ложные срабатывания, например от потоков тёплого воздуха (ветер), испарений от обогревателей и даже сквозняков.
- Могут не срабатывать на человека, который зашёл в помещение из улицы в жаркую погоду, а также на фоне окон и прочих источников тепловых излучений. Исходя из этого – не слишком высокая точность обнаружения движения.
4.2 Ультразвуковые и микроволновые датчики движения
В основе принципа работы ультразвуковых датчиков лежит эффект Доплера. Это явление, при котором волна изменяет свою длину при движении излучателя или приёмника. Такие устройства состоят из двух элементов – излучателя и приёмника. Они закреплены неподвижно на стене или потолке.
В нормальном состоянии, когда ничто в поле действия не движется – посылаемые и принятые отраженные волны одинаковы, при возникновении движений – волны изменяются.На это реагирует схема приема сигнала УЗ-датчика, после чего включается исполнительный (силовой) элемент – реле или симистор.
Кстати, таким же образом в пространстве ориентируются некоторые птицы и животные, например, летучие мыши. В технике такой же принцип используется и для обнаружения преград при движении автомобилей (система «парктроник») и других механизмов.
Важно! Учтите, что животные реагируют на ультразвук, поэтому если ваш кот или собака стали себя ненормально вести после установки такого устройства – просто поменяйте его на ИК-датчик, например.
Достоинства УЗ датчиков:
- в отличие от приборов предыдущего типа не страдают от ложных срабатываний на перемещение тепловых воздушных масс;
- большая точность срабатывания.
Недостатки УЗ датчиков:
- Срабатывают на любые движущиеся предметы, а не только на человека.Это значит, что занавески или качающиеся ветви деревьев (если использовать на улице) станут причиной включения света.
- Не всегда реагируют на плавные движения.
- Могут раздражать животных.
4.3 Микроволоновые (радиоволновые) датчики
Микроволновые или, как их еще называют, радиоволновые датчики действуют по тому же принципу – есть приёмник и излучатель (обычно у них одна общая антенна), которые реагируют на изменение характера волн. Только в этом случае используются не звуковые, а радиоволны. Их принцип работы вы видите на рисунке ниже.
В отличие от ультразвуковых, микроволновые датчики движения не раздражают животных. При этом могут улавливать движения через стены и двери, что может быть как полезно, так и вредно в эксплуатации. Также существует мнение, что электромагнитные высокочастотные излучения могут быть вредны для живых организмов.
Как можно догадаться по названию акустические датчики реагируют на появление шумов и звуков. Самое близкое устройство к ним – хлопковый выключатель света. Отличием от последнего является лишь большая чувствительность и шире диапазон настроек.
Чаще всего встречаются в составе комбинированных устройств, работая в паре с фотореле — так называемый светошумовой или фотоакустический датчик (выключатель).
Отдельно акустические датчики используются чаще не в схемах управления освещением, а в охранных системах.
- Пример фотоакустического выключателя (ФАВ):
- Схемы подключения фотореле:
Цветовая маркировка проводов и схемы могут незначительно отличаться, поэтому уточняйте в инструкции к конкретной модели. Чтобы сделать принудительное включение или отключение света схему можно дополнить выключателем как показано на рисунках ниже.
- При такой схеме, фотореле управляет освещением, однако имеется возможность принудительно включить освещение выключателем независимо от освещенности.
- Так же может применяться схема, при которой выключатель способен принудительно отключать освещение, даже при недостаточной освещенности:
- В случае если нагрузка освещения превышает номинальный ток реле можно использовать схему подключения освещения через контактор.
- При такой схеме фотореле управляет не осветительными приборами, а контактором, а он, в свою очередь, осуществляет включение и отключение освещения, таким образом ток нагрузки проходит не через контакты фотореле, а через контакты контактора.
- Примечание: На рисунке приведен пример для трёхфазной цепи, для однофазной подключать таким же образом, отличаться будет лишь то что в силовой цепи будет 2 провода, а не 4.
Как уже говорилось выше существуют фотореле для монтажа в электрощит на дин-рейку с внешним светочувствительным датчиком. Схема их подключения несколько иная, но в целом особых отличий нет. У вашего прибора могут быть другие назначения клемм, проверяйте это в паспорте завода-изготовителя.
Чтобы свет включался вечером и горел до утра – используйте датчики освещенности (фото- или сумеречное реле). Если нужно чтобы свет включался только тогда, когда вы подходите к дверям или заходите в комнату – используйте один или несколько датчиков движения любого типа либо акустические (светошумовые) датчики . Подключаются они, в большинстве своём, аналогично фотореле.
- Схемы подключения датчиков движения и фотоакустических (светошумовых) датчиков:
- При такой схеме управление освещением осуществляется только датчиком движения. Так же можно применять и схемы с выключателем:
- В случае если необходимо, чтобы свет включался, когда вы захотите в небольшую комнату с разных дверей (например, коридор или прихожая) – самым оптимальным будет установка двух ИК-датчиков движения в противоположных углах или на стенах:
Чтобы датчик движения не включал свет днём – либо подключите его последовательно с выключателем, либо используйте в паре с сумеречным реле. Для этих же целей разработаны комбинированные датчики света.
Такие устройства в себе совмещают фотореле и ИК-датчик движения. Ярким примером являются светошумовые датчики – их используют совместно или в составе светильников для ЖКХ. Часто их устанавливают в подъездах и других общественных местах, пример такого светильника вы видите на рисунке ниже.
Что объединяет все виды устройств для автоматического управления освещением, так это возможность везде настраивать чувствительность к движениям или пороговое значение освещенности. А также одинаковые или подобные схемы подключения.
В датчиках движения зачастую есть регулировка задержки отключения света.
То есть вы можете установить сколько секунд или минут будет гореть свет после срабатывания датчика. Это удобно, например, если датчик установлен около ворот участка частного дома, и вам нужно чтобы свет оставался включенным пока вы не дойдете до входной двери, где вас «встретит» второй датчик.
При выборе датчика обращайте внимание на его мощность. Это особенно важно, если вы собираетесь включать группу осветительных приборов, например, мощные прожекторы.Если вам не удалось найти прибор нужной мощности – не расстраивайтесь, к любому датчику движения или освещенности можно подключить контактор нужной величины, как мы показывали на схеме выше.
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в х!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.