Левитация и эффект бифельда-брауна, ионный ветер — как это работает

Что это такое?

Сегодня ионолет, он же ионокрафт (или лифтер, с ударением на последнем слоге), – это только легкая летающая модель, способная мгновенно оторваться от поверхности, как только на провод, соединяющий ее с источником питания, будет подан электрический ток.

Но для инженеров и фантастов это один из вариантов летательного аппарата будущего, имеющего весьма заманчивые характеристики. Он будет экологически чистым, в отличие от современных самолетов и вертолетов, бесшумным и без значительных усилий сможет вертикально взлетать и садиться.

Во всяком случае, так его представляют исследователи. Не это ли технология для летающих автомобилей будущего?

Подъемная сила в таком аппарате создается благодаря эффекту Бифельда – Брауна. Еще в 20-х годах прошлого века американскими учеными Томасом Брауном и ассистировавшим ему Полом Бифельдом, экспериментировавшими с рентгеновскими трубками Кулиджа, был обнаружен необычный эффект.

Некая сила действовала на заряженный до высокого напряжения асимметричный конденсатор. Ее было достаточно даже для того, чтобы поднять конденсатор в воздух. Сам ученый поначалу был уверен, что нашел способ влиять на гравитацию с помощью электричества.

Тогда, открытому явлению, даже дали соответствующее название – «электрогравитация». Сегодня такие опыты популярны не только у школьников и студентов, увлекающихся физикой, но и среди сторонников различных теорий, не признаваемых современной наукой.

По их мнению, ионный ветер дает только 10-20% тяги ионного двигателя, остальные дает пока не известная науке сила.

Вот только если бы дело было в гравитации, а не в движении заряженных ионов воздуха, как есть на самом деле, то устройство одинаково хорошо работало бы как в воздушной среде, так и в вакууме.

Но в результате множества опытов было установлено, что в отсутствие газовой среды устройство не работает. В вакууме эффект исчезает. Здесь не стоит путать ионолет (атмосферный ионный двигатель) с ионными двигателями, все чаще применяемыми в космических аппаратах.

Они-то как раз и предназначены для работы в вакууме. Такой двигатель свободно работает в безвоздушной среде, так как реактивная тяга возникает на базе запасенного рабочего тела, которым, как правило, является инертный газ (аргон, ксенон и т. п.). Им космический аппарат заправляют до старта.

В случае ионолета его рабочим телом фактически является забортный воздух, который, разумеется, с собой брать в полет не надо.

Секрет подъемной силы ионолета прост. При очень высоком напряжении межу электродами – анодом и катодом – возникает ионный (или электростатический) ветер.

Это явление также называется электрогидродинамическим эффектом (ЭГД). Причем один электрод, как правило, тонкий или острый, другой – широкий и плоский. То есть они не симметричны друг другу.

Таким образом, получается левитирующий асимметричный воздушный конденсатор.

Левитация и эффект Бифельда-Брауна, ионный ветер - как это работает

Один из вариантов модели ионолета / © jlnlabs.org

Около отрицательно заряженного электрода молекулы воздуха ионизируются. Они получают отрицательный заряд и начинают двигаться к электроду с положительным зарядом. При этом они увлекают на своем пути нейтральные молекулы воздуха, чем и создается необходимая тяга для полета. Причем полной ионизации проходящего через аппарат воздуха не требуется.

Простейшая схема летательного аппарата выглядит следующим образом. Отрицательно заряженные электроды представляют собой металлические острия. Их несколько, и они расположены над металлической сеткой с положительным зарядом.

Образовывающиеся между ними ионы устремляются к сетке, где и расстаются со своим зарядом, выходя из двигателя уже обычными молекулами воздуха. Тем самым электроэнергия высокого напряжения преобразуется в кинетическую энергию воздушного потока.

Такой ионный двигатель еще называют электростатическим движителем (ЭСД).

Регулируя напряжение на электродах, можно дать команду на взлет и посадку, изменяя напряжение только на некоторых электродах, можно наклонять и поворачивать аппарат. И при этом никаких движущихся частей двигатель на ионном ветре не имеет. Конструкция проста, а перспективные варианты движителя не предполагают серьезного технического обслуживания, смазки и т. п.

Считается, что сам термин «ионокрафт» (ionocraft), в русском варианте «ионолет», придумал наш соотечественник. Пионер авиации, летчик-ас Первой мировой войны, покинувший Россию после революции, авиатор, изобретатель и авиаконструктор Александр Николаевич Прокофьев-Северский.

Он же в 1964 году получил патент на свой летательный аппарат. За годы, проведенные в Америке, Северский работал консультантом при Министерстве обороны, основал две авиастроительные фирмы, сконструировал несколько удачно себя показавших самолетов, стал автором множества изобретений и патентов.

Однако коммерческого успеха так и не добился. В 1939 году Северский был отстранен инвесторами от управления основанной им компании. После чего он занялся писательской деятельностью, читал лекции и благодаря своему умению выступать на публике получил широкую известность, а в 60-х годах занялся ионолетами.

Северский подробно описал физику эффекта и запатентовал основные принципы работы ионолета.

Модель, созданная Северским, представляла собой прямоугольную рамку из бальсы (дерева, древесина которого считается самой легкой в мире) с натянутой на нее алюминиевой проволокой. Электрическая энергия подводилась к аппарату по коаксиальному кабелю. Но сделать что-то большее у него не получилось.

Попытка Северского построить ионокрафт, способный подняться в воздух с человеком на борту, не удалась. Формально по причине отсутствия денег. Но все-таки основная сложность создания такого аппарата кроется в другом. Даже сейчас модели ионолетов не способны нести на себе собственный источник питания.

Читайте также:  Oled технологии в освещении

Все модели подключаются к внешнему источнику питания, так как собственный им поднять еще не под силу, не говоря уже о пилоте или дополнительном оборудовании.

Левитация и эффект Бифельда-Брауна, ионный ветер - как это работает

Летающая модель ионолета и проект одноместного аппарата А. Н. Северского / © Popular Mechanics

Не все так просто

В чем же проблема? Атмосферному ионному двигателю требуется ток очень высокого напряжения. В то же время к идее ионолета не так давно вернулись снова.

И не кто-то, а исследователи из Массачусетского технологического института (MIT), который, как известно, является новатором в области перспективных технологий.

Согласно их выводам, для подъема в воздух беспилотного аппарата с оборудованием на борту и собственным источником питания потребуется несколько сотен или даже тысяч киловольт. Для сравнения, в бытовой эклектической сети напряжение тока составляет 220 вольт. Это всего 0,22 киловольта.

Легкой экспериментальной модели ионолета, сделанной в лаборатории MIT, потребовалось напряжение всего в несколько киловольт. В качестве отрицательно заряженного электрода выступил тонкий медный провод, а положительного – легкая алюминиевая трубка. Каркас был склеен из бальсы.

Но в целом результаты опыта оказались обнадеживающими. Они показали, что двигатели, основанные на эффекте Бифельда – Брауна, могут быть гораздо более эффективными, чем традиционные.

Эксперименты показали, что тяга такого атмосферного ионного двигателя может составлять до 110 ньютонов на киловатт мощности, тогда как традиционные реактивные двигатели имеют показатель всего 2 ньютона на киловатт.

Но есть и другая сложность в создании таких аппаратов. В сравнении с традиционными реактивными двигателями, атмосферный ионный двигатель существенно уступает по показателю «плотности» тяги, то есть ее количеству на единицу рабочей площади. Объясняется это тем, что ее величина напрямую зависит от ширины воздушного зазора между анодом и катодом.

Чем он больше, тем сильнее тяга. Следовательно, чтобы создать даже легкий летательный аппарат, потребуется разместить электроды на большом расстоянии друг от друга. Фактически такие зазоры будут определяться максимально возможными габаритами летательного аппарата.

Таким образом, сам фюзеляж, окруженный электродами, будет находиться внутри электростатического движителя.

Левитация и эффект Бифельда-Брауна, ионный ветер - как это работает

Ионолет в виде «летающей тарелки» / © Popular Mechanics

Впечатляющие перспективы

Если верить обещаниям исследователей, передвигаться такой аппарат сможет бесшумно и не будет иметь вредных выбросов. Кроме того, он сможет вертикально взлетать, садиться, а также зависать над поверхностью. В этом он подобен вертолету. Но, в отличие от последнего, отсутствие вибрации позволит создать идеальный комфорт в пассажирской кабине.

Взлетать и садиться такие аппараты смогут в непосредственной близости от жилых и административных зданий, не создавая шума, а следовательно, и неудобства окружающим.

В прошлом такие летательные аппараты представлялись пилотируемыми, но сейчас с развитием беспилотной техники можно сказать, что первые ионолеты будут обходиться без человека на борту.

Незаменим он окажется и на военной службе. Ионолет невидим в инфракрасном диапазоне, что является настоящей находкой для военных.

Такой беспилотный летательный аппарат можно будет использовать для разведывательных и иных миссий, не рискуя быть обнаруженным прибором ночного видения. Реализован ионолет может быть и в виде левитирующей платформы, получающей питание с земли по проводам.

Летающий строительный кран, беспилотник для патрулирования дорожного движения, метеозонд, отслеживающий изменения погоды. Ему можно найти много способов применения.

Могут пригодиться ионолеты и для полетов в атмосфере других планет. Ведь им не надо нести на борту топливо. Но все-таки, осталось решить вопрос с мощным источником питания.

Левитация и эффект Бифельда-Брауна, ионный ветер - как это работает

Сравнение экономичности несущей системы вертолета и ионолета (электростатического движителя) / © «Техника-молодежи»

Сделай сам

Если есть опыт работы с электричеством, сделать простейшую летающую модель ионолета можно и самому. При этом необходимо предпринять соответствующие меры предосторожности, так как придется работать с током высокого напряжения.

В основе конструкции – склеенная из тонких бальсовых планок треугольная рама. Верхний электрод – тонкая медная проволока сечением 0,1 кв. мм. Нижний – широкая полоска из пищевой алюминиевой фольги, натянутая на раму. Расстояние между ними – около 30 мм.

Фольга должна огибать планки и не иметь острых ребер, в противном случае может возникнуть электрический пробой.

Левитация и эффект Бифельда-Брауна, ионный ветер - как это работает

Простейшая модель ионолета /© linux-host.org

После сборки конструкции к ней подключается высоковольтный источник питания с напряжением 30 кВ. Положительный вывод – к проводу, отрицательный – к фольге. Чтобы модель не улетела, ее нужно привязать к столу капроновыми нитями. 

Видео сборки и полета модели ионолета /© HVLabs.com

На ионной тяге: cамодельный ионолет

Хватит размениваться на мелочи! «Популярная механика» решила построить летательный аппарат с электрореактивным двигателем — ионным. Это дальний родственник ионных двигателей, которые ставят на некоторые современные космические аппараты.

Левитация и эффект Бифельда-Брауна, ионный ветер - как это работает

Для полета ионолет использует те же принципы, что и ионные двигатели, которые устанавливают на космические аппараты. На тонком проводе возникает коронный разряд, воздух ионизуется. «Ионы движутся в сторону плоского электрода и на нем гибнут, – объясняет Олег Батищев, с.н.с.

факультета аэронавтики и астронавтики МIT и разработчик геликонного плазменного двигателя. – Очень важную роль играют упругие соударения ионов и нейтралов – резонансная перезарядка и упругие соударения без передачи заряда типа газокинетических.

Читайте также:  Схемы соединения аккумуляторов: параллельное и последовательное подключение, как сделать правильно

Длина пробега на порядок меньше ионизационной, поэтому весь импульс ионов передается газу, что и создает тягу, так как ионы движутся в направлении поля, которое задано геометрией электродов».

Включаю высоковольтный генератор, и легкий серебристый аппарат под тихое шуршание коронного разряда поднимается над столом.

Выглядит это совершенно фантастически, и я начинаю понимать, почему в интернете встречаются самые удивительные объяснения этому явлению.

Каких только версий здесь не встретишь — от привлечения эфирной физики до попыток объединить электромагнитное и гравитационное взаимодействия. «Популярная механика» попыталась внести ясность в этот вопрос.

Конструкция ионолета

В качестве ионолета мы решили построить простейшую конструкцию.

Наш аппарат — асимметричный конденсатор, верхний электрод которого представляет собой тонкий медный провод, а нижний — пластинку из фольги, которая натянута на рамку, склеенную из тонких деревянных (бальсовых) планок.

Расстояние между верхним проводом и фольгой составляет порядка 30 мм. Очень важно, чтобы фольга огибала планки и не имела острых «ребер» (иначе может возникнуть электрический пробой).

К полученному конденсатору мы подключили высоковольтный генератор, изготовленный из модифицированного блока питания бытового ионизатора воздуха с напряжением 30кВ.

Положительный вывод — к верхнему тонкому проводу, отрицательный — к пластинке из фольги. Поскольку аппарат лишен системы управления и стабилизации, мы привязали его тремя капроновыми нитями к столу.

После включения напряжения он оторвался от поверхности и завис над столом, насколько позволяла привязь.

Левитация и эффект Бифельда-Брауна, ионный ветер - как это работает

Раму ионолета мы построили из тонких планок бальсы, склеив их цианакрилатным клеем. Для «обшивки» стенок (второго электрода) использовали тонкую алюминиевую фольгу, натянутую на раму (треугольную в плане, со стороной около 200 мм) шириной 30 мм.

Обратите внимание, чтобы фольга не имела острых граней и плавно огибала планки, иначе напряженность электрического поля у поверхности будет очень высоким, что может привести к пробою.

Верхний электрод мы выполнили из тонкой медной проволоки сечением 0,1 мм2 (использовалась намоточная проволока со снятой изоляцией) — на ней при подаче высокого напряжения возникает коронный разряд.

Верхний электрод (положительный) отстоит от нижнего (отрицательного) на расстояние около 3 см. Ионолет мы прикрепили к столу капроновыми нитями, чтобы он не летал бесконтрольно по всему помещению.

Левитация и эффект Бифельда-Брауна, ионный ветер - как это работает Левитация и эффект Бифельда-Брауна, ионный ветер - как это работает

История вопроса

В 1920-х годах американский физик Томас Таунсенд Браун в процессе экспериментов с рентгеновскими трубками Кулиджа наткнулся на любопытный эффект.

Он обнаружил, что на асимметричный конденсатор, заряженный до высокого напряжения, действует некая сила, которая даже способна поднять такой конденсатор ввоздух. На свой аппарат Браун 15 ноября 1928 года получил британский патент №300311 «Метод получения силы или движения».

Эффект возникновения такой силы назвали эффектом Бифельда-Брауна, поскольку Пол Альфред Бифельд, профессор физики в Университете Денисона в Гранвилле (Огайо), помогал Брауну в его экспериментах.

Сам изобретатель верил в то, что он открыл способ с помощью электричества влиять на гравитацию. Позднее Браун получил еще несколько патентов, но в них какое-либо влияние на гравитацию уже не упоминалось.

В таком виде эта история встречается в интернете почти повсеместно — в статьях многочисленных непризнанных изобретателей «антигравитационных аппаратов» и «космических кораблей будущего». Но ведь наш ионолет действительно летает!

В качестве силовой установки (высоковольтного генератора) мы использовали блок питания (БП) от бытового ионизатора воздуха с напряжением около 30 кВ.

Поскольку у нашего ионизатора был выведен на высоковольтный электрод только один контакт, нам пришлось разобрать корпус, извлечь сам блок питания и подсоединить оба вывода.

После этого мы аккуратно поместили БП в подходящую по размерам коробку и для безопасности залили парафином. Вместо БП можно использовать блок питания старого монитора (ЭЛТ).

Почему он летает

На самом деле для объяснения принципа не требуется привлечения механизмов неизвестной современной физике «электрогравитации».

Как пояснил «Популярной механике» доцент кафедры общей физики Московского физико-технического института (МФТИ) Юрий Маношкин, все дело в ионизации воздуха: «В данном случае напряженность поля у одного из электродов — верхнего тонкого провода — выше, там возникает коронный разряд, ионизующий воздух.

Ионы разгоняются в электрическом поле конденсатора по направлению ко второму электроду, создавая реактивную тягу, — образуется так называемый ионный ветер».

Это, разумеется, лишь качественное объяснение эффекта, поскольку, по словам Юрия Маношкина, «теория этого процесса, включающего множество аспектов — физику газового разряда, плазмы и газодинамику, — очень сложна и пока еще недостаточно разработана. Но этот вопрос изучается, поскольку в перспективе имеет множество вполне серьезных применений. Речь идет не о таких вот летающих игрушках, а, например, о возможностях с помощью ионизации влиять на характер аэродинамического обтекания летательных аппаратов».

Электрический ветер: как создание ионолёта может изменить современную авиацию

Американские учёные испытали самолёт, работающий на ионной тяге. Это явление, при котором движение воздуха создаётся с помощью электрического поля. В ходе испытаний аппарат пролетел 60 м. Инженеры планируют усовершенствовать конструкцию машины, чтобы она смогла преодолевать большие расстояния и перевозить пассажиров.

Инженеры Массачусетского технологического института провели успешное испытание ионолёта. В действие такой аппарат приводит ионная тяга — явление, при котором движение воздуха создаётся с помощью электрического поля. Силовая установка обеспечила ионолёту тягу в три ньютона. Аппарат смог пролететь 60 м.

От идеи до воплощения

Автор исследования Стивен Барретт задумал разработку бесшумного и безопасного для окружающей среды летательного аппарата несколько лет назад.

Вдохновение для создания ионного самолёта инженер черпал из фильма и сериала «Звёздный путь».

Наблюдая в детстве за космическими кораблями, скользившими по воздуху на экране телевизора, будущий инженер мечтал однажды претворить фантастическую задумку сценаристов в жизнь.  

«Я полагал, что турбины и пропеллеры не будут нужны летательным аппаратам будущего. В моём воображении самолёты должны были напоминать шаттлы из «Звёздного пути», которые тихо скользят по воздуху, могут вертикально садиться и взлетать, а также зависать над поверхностью», — сообщил Баррет.

Около девяти лет назад Баррет начал искать способы создания двигательной установки для «самолёта будущего». Инженер решил обратиться к явлению ионного ветра, также называемому эффектом Бифельда — Брауна. В 1921 году физики Пауль Бифельд и Томас Браун выяснили, что ионный ветер возникает между двумя отрицательно заряженными электродами, если по металлическому проводу между ними пустить ток.

В 1960-е годы в США изобретатель и авиаконструктор Александр Прокофьев-Северский продолжил изучение этого явления и даже пытался построить свой ионолёт. Его модель могла взлетать и садиться, а также поворачиваться в воздухе. Электричество к аппарату подводилось по специальному кабелю.

Читайте также:  Промышленные частотные преобразователи

Левитация и эффект Бифельда-Брауна, ионный ветер - как это работает

  • Летающая модель ионолёта и проект одноместного аппарата А.Н. Северского.
  • © Popular Mechanics

Однако проблема создания ионолёта, который смог бы летать, заключалась в том, что его силовой установке требовался ток очень высокого напряжения. Учёные из Массачусетского технологического института смогли решить эту проблему.

В фюзеляже ионолёта они расположили литиево-полимерные батареи, генерирующие электричество напряжением 40 тыс. вольт, которых, по их расчётам, должно было хватить для поднятия в воздух небольшого аппарата.

 Масса готового ионолёта составила 2,27 кг, размах крыльев — 5 м. 

«Электрификация» транспорта 

Инженеры провели испытания ионолёта в закрытом помещении — в спортивном зале. В ходе эксперимента аппарат вертикально поднялся в воздух и пролетел около 60 м на высоте 47 см от пола, после чего благополучно приземлился. Испытания учёные успешно повторили десять раз. 

«Это первый в истории полёт самолёта, который не имеет в своей двигательной конструкции никаких движущихся частей. Инженерам открывается перспективный путь для создания новых ионолётов», — заявил Баррет. 

По словам изобретателей, в отличие от современных лайнеров, ионолёту не требуется топливо, то есть он является экологически чистым. Кроме того, новый аппарат работает бесшумно. Американские учёные планируют усовершенствовать конструкцию ионолёта, чтобы он смог перемещаться на большие расстояния и в конечном счёте перевозить пассажиров.

По мнению российских экспертов, переход на электрическое движение в авиации открывает новые перспективы в самолётостроении.

«Становится труднее совершенствовать текущие авиационные двигатели, делать их более эффективными. В этом случае перевод авиации на электричество кажется перспективным, даже логичным.

 На дорогах уже появились электромобили, теперь дело за воздухом.

Можно смело сказать, что электроэнергия начинает играть важную роль в развитии транспорта», — сообщил в беседе с RT инженер-исследователь Научно-технологического центра уникального приборостроения РАН Александр Наумов.

По мнению Наумова, результаты испытаний американских учёных выглядят многообещающими. Однако создание полноценного ионолёта сопряжено с рядом трудностей. Так, в отличие от реактивных двигателей, у ионных довольно маленькая плотность тяги. Это означает, что для взлёта такому аппарату потребуется довольно большая силовая установка, скорее всего, превышающая размеры самого ионолёта.

«Конечно, до практического использования ионолётов пока далеко. Однако нет никаких оснований сомневаться в возможности появления самолётов, работающих на ионной тяге. Такие аппараты, вероятно, пригодятся и в космической отрасли — для долгосрочных полётов к другим планетам», — отметил Наумов.

Добавьте RT в список ваших источников

Smart Videos — Умное видео

Эффект Бифельда-Брауна (Biefield-Brown Effect) заключается в том, что электрический конденсатор будет перемещаться в сторону положительного полюса и будет сохранять это движение, пока не разрядится. Это движение не противоречит закону физики, что каждое действие вызывает аналогичное противодействие. Сила противодействия присутствует, но, в случае гравитации, она не явно выражена.

Используя эту технологию, Браун построил дисковидный аппарат 24 футов диаметром, который предположительно достигал скорости 17 футов/с в его лаборатории.

Диски были вариацией простого конденсатора из двух пластин, заряженных постоянным напряжением 50 кВ. Когда диски заряжались, они начинали двигаться по круговому пути.

Для поддержания их полета требовалась энергия всего 50Вт, что соответствует потреблению маленькой лампочки.

Браун также построил экспериментальные диски диаметром 3 фута. Когда они заряжались напряжением 50КВ, скорость их перемещения была столь впечатляюща, что изобретением заинтересовались военные. Диски при полете издавали мягкое гудение и были окружены сиянием.

Многие ученые и инженеры были свидетелями полетов дисков Брауна, но лишь некоторые из них верили, что в основе движения лежит открытый им эффект. Недостаток профессиональной и финансовой поддержки вынудили Брауна перебраться во Францию.

Проведя там тесты в вакууме, Браун заявил, что диски летали с еще большей эффективностью.

Томас Таунсенд Браун умер на Авалоне, Catalina Island, California, 22 октября 1985 года. Его лаборатория была разукомплектована, большинство оборудования продано. Томас Браун получил множество патентов на различные электрокинетические аппараты на базе эффекта Бифельда-Брауна, но с его смертью практически все исследования были прекращены.

Смотрим…

Использованные видеоролики: www.youtube.com/watch?v=uF8otSSPgdA, www.youtube.com/watch?v=JBBlZ8agldE

Если честно, я испытал некоторые трудности с точным переводом данного видео. Потом помотрел еще парочку, вроде бы начал понимать, потом еще чего-то почитал на английском и совсем запутался… На русском ничего вразумительного тоже не нашел…

Поэтому, если кто-то что-то знает о последних разработках в этой области или кинет ссылку, где можно об этом доступно почитать, буду очень благодарен! Добро пожаловать на обсуждение в комментах!


— Если у меня есть читатели из славного города Новочеркасск, то им наверняка будет интересен и полезен этот сайт, ведь там можно узнать все о недвижимости и не только.
— Перед тем как делать ремонт или чинить что-то, обязательно посетите магазин электроинструментов и купить себе дрель!

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock
detector