Статья о различных способах подключения нагрузки к микроконтроллерному блоку управления с помощью реле и тиристоров.
Все современное оборудование, как промышленное, так и бытовое приводится в действие электричеством. При этом всю его электрическую схему можно разделить на две большие части: устройства управления (контроллеры от английского слова CONTROL – управлять) и исполнительные механизмы.
Лет двадцать назад блоки управления выполнялись на микросхемах малой и средней степени интеграции. Это были серии микросхем К155, К561, К133, К176 и им подобные. Они называются логическими цифровыми микросхемами, так как выполняют логические операции над сигналами, а сами сигналы являются цифровыми (дискретными).
В точности также, как обычные контакты: «замкнут – разомкнут». Только в этом случае эти состояния называются соответственно «логическая единица» и «логический ноль». Напряжение логической единицы на выходе микросхем находится в пределах от половины напряжения питания до его полной величины, а напряжение логического нуля у таких микросхем, как правило, 0…0,4В.
Алгоритм работы таких блоков управления осуществлялся за счет соответствующего соединения микросхем, и количество их было достаточно велико.
В настоящее время все блоки управления разрабатываются на основе микроконтроллеров разных типов. В этом случае алгоритм работы закладывается не схемным соединением отдельных элементов, а «прошитой» в микроконтроллере программой.
В связи с этим вместо нескольких десятков, а то и сотен микросхем блок управления содержит микроконтроллер и некоторое количество микросхем для взаимодействия с «внешним миром». Но, несмотря на такое усовершенствование, сигналы микроконтроллерного блока управления все те же цифровые, что и у старых микросхем.
Понятно, что мощности таких сигналов недостаточно, чтобы включить мощную лампу, двигатель, да и просто реле. В этой статье мы рассмотрим, какими способами можно подключить к микросхемам мощные нагрузки.
Самые простые способы это включение нагрузки через реле. На рисунке 1 реле включается при помощи транзистора VT1, для этого на его базу через резистор R1 от микросхемы подается логическая единица, транзистор открывается и включает реле, которое своими контактами (на рисунке не показаны) включает нагрузку.
Каскад, показанный на рисунке, 2 работает по-другому: чтобы включить реле на выходе микросхемы должен появиться логический 0, который закроет транзистор VT3. при этом транзистор VT4 откроется и включит реле. Кнопкой SB3 можно включить реле вручную.
На обоих рисунках можно заметить, что параллельно обмоткам реле включены диоды, причем по отношению к напряжению питания в обратном (непроводящем) направлении. Их назначение погасить ЭДС самоиндукции (может в десять и более раз превышать напряжение питания) при выключении реле и защитить элементы схемы.
Если же в схеме не одно, два реле, а намного больше, то для их подключения выпускается специализированная микросхема ULN2003A, допускающая подключение до семи реле. Такая схема включения показана на рисунке 3, а на рисунке 4 внешний вид современного малогабаритного реле.
На рисунке 5 показана схема подключения нагрузки с помощью оптронных тиристоров ТО125-12,5-6 (вместо которых ничего не меняя в схеме, можно подключить реле). На этой схеме следует обратить внимание на транзисторный ключ, выполненный на двух транзисторах VT3, VT4.
Подобное усложнение вызвано тем, что некоторые микроконтроллеры, например AT89C51, AT89C2051 на время сброса при включении в течение нескольких миллисекунд удерживают на всех выводах уровень логической 1.
Если нагрузку подключить по схеме приведенной на рисунке 1, то срабатывание нагрузки произойдет сразу же при включении питания, что может быть очень нежелательным явлением.
Для того, чтобы включить нагрузку (в данном случае светодиоды оптронных тиристоров V1,V2) на базу транзистора VT3 через резистор R12 следует подать логический 0, что приведет к открытию VT3 и VT4.
Последний зажжет светодиоды оптотиристоров, которые откроются и включат сетевую нагрузку.
Оптронные тиристоры обеспечивают гальваническую развязку от сети собственно схемы управления, что повышает электробезопасность и надежность схемы.
Несколько слов о тиристорах. Не вдаваясь в технические подробности и вольтамперные характеристики можно сказать, что тиристор — это простой диод, у них даже обозначения похожи. Вот только у тиристора имеется еще управляющий электрод. Если на него подать положительный относительно катода импульс, даже кратковременный, то тиристор откроется.
В открытом состоянии тиристор будет находиться до тех пор, пока через него течет ток в прямом направлении. Этот ток должен быть не менее некоторой величины, называемой током удержания. Иначе тиристор просто не включится.
Выключить тиристор можно лишь разорвав цепь или подав напряжение обратной полярности. Поэтому, чтобы пропустить обе полуволны переменного напряжения используется встречно – параллельное включение двух тиристоров (см. рис. 5).
Чтобы не делать такого включения выпускаются симисторы или на буржуйском языке триаки. В них уже в одном корпусе изготовлены два тиристора, включенные встречно – параллельно. Управляющий электрод у них общий.
На рисунке 6 показаны внешний вид и цоколевка тиристоров, а на рисунке 7 то же для триаков.
На рисунке 8 показана схема подключения триака к микроконтроллеру (выходу микросхемы) при помощи специального маломощного оптотриака типа MOC3041.
Этот драйвер внутри себя содержит светодиод, подключенный к выводам 1 и 2 (на рисунке показан вид на микросхему сверху) и собственно оптотриак, который, будучи засвечен светодиодом, открывается (выводы 6 и 4) и, через резистор R1, соединяет управляющий электрод с анодом, за счет чего открывается мощный триак.
Резистор R2 предназначен для того, чтобы не произошло открытия триака в отсутствии управляющего сигнала в момент включения питания, а цепочка C1, R3 предназначена для подавления помех в момент переключений. Правда, MOC3041 особых помех не создает, поскольку имеет схему CROSS ZERO (переход напряжения через 0), и включения происходят в тот момент, когда сетевое напряжение только перешло через 0.
Все рассмотренные схемы имеют гальваническую развязку от питающей сети, что обеспечивает надежность работы и электробезопасность при значительной коммутируемой мощности.
Если же мощность незначительна и не требуется гальваническая развязка контроллера от сети, то возможно подключение тиристоров непосредственно к микроконтроллеру. Подобная схема приведена на рисунке 9.
Это схема елочной гирлянды произведенной, конечно, в Китае.
Управляющие электроды тиристоров MCR 100-6 через резисторы подключены непосредственно к микроконтроллеру (находится на плате под каплей черного компаунда).
Мощность управляющих сигналов настолько мала, что потребление тока на все четыре сразу, менее 1 миллиампера. При этом обратное напряжение до 800В и ток до 0,8А. Габаритные же размеры как у транзисторов КТ209.
Конечно, в одной короткой статье невозможно описать сразу все схемы, но, основные принципы их работы, кажется рассказать удалось. Сложностей особых тут нет, схемы все проверены на практике и, как правило, при ремонте или самостоятельном изготовлении огорчений не приносят.
Электронная книга — руководство про микроконтроллеры AVR для начинающих
Борис Аладышкин
Радиоуправляемое реле своими руками
Радиоэлектроника для начинающих
Кто из начинающих радиолюбителей не хотел сделать какое-нибудь устройство с управлением по радиоканалу? Наверняка многие.
Давайте рассмотрим, как на базе готового радиомодуля собрать несложное радиоуправляемое реле.
В качестве приёмо-передатчика я использовал готовый модуль. Купил его на AliExpress вот у этого продавца.
Комплект состоит из пульта–передатчика на 4 команды (брелок), а также платы приёмника. Плата приёмника выполнена в виде отдельной печатной платы и не имеет исполнительных цепей. Их необходимо собрать самому.
Вот внешний вид.
Брелок добротный, приятный на ощупь, поставляется с батарейкой 12V (23А).
В брелоке встроена плата, на которой собрана довольно примитивная схема пульта-передатчика на транзисторах и шифраторе SC2262 (полный аналог PT2262).
Смутило то, что на микросхеме в качестве маркировки указано SC2264, хотя из даташита известно, что дешифратор для PT2262 – это PT2272. Тут же на корпусе микросхемы чуть ниже основной маркировки указано SCT2262.
Вот и думай, что к чему . Что ж, для Китая это не удивительно.
Передатчик работает в режиме амплитудной модуляции (АМ) на частоте 315 МГц.
Приёмник собран на небольшой печатной плате. Радиоприёмный тракт выполнен на двух SMD-транзисторах с маркировкой R25 – биполярных N-P-N транзисторах 2SC3356. На операционном усилителе LM358 реализован компаратор, а к его выходу подключен дешифратор SC2272-M4 (она же PT2272-M4).
Как работает устройство?
Суть работы сего устройства такова. При нажатии на одну из кнопок пульта A, B, C, D передаётся сигнал. Приёмник усиливает сигнал, а на выходах D0, D1, D2, D3 платы приёмника появляется напряжение 5 вольт.
Вся загвоздка в том, что 5 вольт на выходе будет только пока нажата соответствующая кнопка на брелоке. Стоит отпустить кнопку на пульте — напряжение на выходе приёмника пропадёт. Упс.
В таком случае не получиться сделать радиоуправляемое реле, которое бы срабатывало при кратковременном нажатии кнопки на брелоке и отключалось при повторном.
Связано это с тем, что существуют разные модификации микросхемы PT2272 (китайский аналог – SC2272). А в такие модули почему то ставят именно PT2272-M4, у которых нет фиксации напряжения на выходе.
А какие же бывают разновидности микросхемы PT2272?
- PT2272-M4 – 4 канала без фиксации. На выходе соответствующего канала +5V появляется только тогда, пока нажата кнопка на брелоке. Именно такая микросхема используется в купленном мной модуле.
- PT2272-L4 – 4 зависимых канала с фиксацией. Если включается один выход, то другие отключаются. Не совсем удобно, если необходимо независимо управлять разными реле.
- PT2272-T4 – 4 независимых канала с фиксацией. Самый лучший вариант для управления несколькими реле. Поскольку они независимы, то каждое может выполнять свою функцию независимо от работы других.
Что же сделать, чтобы реле срабатывало так, как нам нужно?
Тут есть несколько решений:
- Выдираем микросхему SC2272-M4 и вместо неё ставим такую же, но с индексом T4 (SC2272-T4). Теперь выходы будут работать независимо и с фиксацией. То есть можно будет включить/выключить любое из 4 реле. Реле будут включаться при нажатии кнопки, и выключаться при повторном нажатии на соответствующую кнопку.
- Дополняем схему триггером на К561ТМ2. Так как микросхема К561ТМ2 состоит из двух триггеров, то понадобиться 2 микросхемы. Тогда будет возможность управлять четырьмя реле.
- Используем микроконтроллер. Требует навыков программирования.
На радиорынке микросхему PT2272-T4 я не нашёл, а заказывать с Ali целую партию одинаковых микрух счёл нецелесообразным. Поэтому для сборки радиоуправляемого реле решил использовать второй вариант с триггером на К561ТМ2.
- Схема достаточно проста (картинка кликабельна).
- Вот реализация на макетной плате.
На макетке я быстренько собрал исполнительную цепь только для одного канала управления. Если взглянуть на схему, то можно увидеть, что они одинаковые. В качестве нагрузки на контакты реле нацепил красный светодиод через резистор в 1 кОм.
Наверняка заметили, что в макетку я воткнул готовый блок с реле. Его я вытащил из охранной сигнализации. Блок оказался очень удобным, так как на плате уже было распаяно само реле, штыревой разъём и защитный диод (это VD1–VD4 на схеме).
Пояснения к схеме
Приёмный модуль
Вывод VT – это вывод, на котором появляется напряжение 5 вольт, если был принят сигнал от передатчика. Я к нему подключил светодиод через сопротивление 300 Ом. Номинал резистора может быть от 270 до 560 Ом. Так указано в даташите на микросхему.
При нажатии на любую кнопку брелока светодиод, который мы подключили к выводу VT приёмника, будет кратковременно вспыхивать — это свидетельствует о приёме сигнала.
Выводы 5V и GND служат для подключения напряжения питания. Для питания схемы нам понадобится стабилизированный блок питания на 12 вольт. Ток потребления схемы небольшой, поэтому подойдёт любой блок. В качестве источника питания можно применить и блок питания, собранный своими руками.
Выводы D0, D1, D2, D3; – это выходы микросхемы дешифратора PT2272-M4. С них мы будем снимать принятый сигнал. На этих выходах появляется напряжение +5V, если был принят сигнал от пульта управления (брелока). Именно к этим выводам подключаются исполнительные цепи. Кнопки A, B, C, D на пульте (брелоке) соответствуют выходам D0, D1, D2, D3.
На схеме приёмный модуль и триггеры запитываются напряжением +5V от интегрального стабилизатора 78L05. Цоколёвка стабилизатора 78L05 показана на рисунке.
Буферная цепь на D-триггере
На микросхеме К561ТМ2 собран делитель частоты на два. На вход С приходят импульсы с приёмника, и D-триггер переключается в другое состояние до тех пор, пока на вход С не придёт второй импульс с приёмника. Получается очень удобно. Поскольку реле управляется с выхода триггера, то и оно будет включено или выключено до тех пор, пока не придёт следующий импульс.
Вместо микросхемы К561ТМ2 можно использовать К176ТМ2, К564ТМ2, 1КТМ2 (в металле с позолотой) или импортные аналоги CD4013, HEF4013, HСF4013. Каждая из этих микросхем состоит из двух D-триггеров. Их цоколёвка одинаковая, но вот корпуса могут быть разные, как, например, у 1КТМ2.
Исполнительная цепь
В качестве силового ключа используется биполярный транзистор VT1. Я использовал КТ817, но подойдёт КТ815. Он управляет электромагнитным реле K1 на 12V. К контактам электромагнитного реле K1.1 можно подключать любую нагрузку. Это может быть лампа накаливания, светодиодная лента, электродвигатель, электромагнит замка и др.
Цоколёвка транзистора КТ817, КТ815.
Следует учесть, что мощность подключаемой к контактам реле нагрузки должна быть не меньше той мощности, на которую рассчитаны контакты самого реле.
Диоды VD1–VD4 служат защитой транзисторов VT1–VT4 от напряжения самоиндукции.
В момент отключения реле в его обмотке возникает напряжение, которое противоположено по знаку тому, которое поступало на обмотку реле от транзистора. В результате транзистор может выйти из строя.
А диоды по отношению к напряжению самоиндукции оказываются открытыми и «гасят» его. Тем самым они берегут наши транзисторы. Не забывайте про них!
Если хотите дополнить исполнительную цепь индикатором включения реле, то добавляем в схему светодиод и резистор на 1 кОм. Вот схема.
Теперь, когда на обмотку реле будет подано напряжение, включится светодиод HL1. Это будет указывать на то, что реле включено.
Вместо отдельных транзисторов в схеме можно использовать всего лишь одну микросхему с минимумом обвязки. Подойдёт микросхема ULN2003A. Отечественный аналог К1109КТ22.
Это микросхема содержит 7 транзисторов Дарлингтона. Удобно то, что выводы входов и выходов расположены друг против друга, что облегчает разводку платы, да и обычное макетирование на беспаечной макетной плате.
Работает довольно просто. Подаём на вход IN1 напряжение +5V, составной транзистор открывается, и вывод OUT1 подключается к минусу питания. Тем самым на нагрузку подаётся напряжение питания. Нагрузкой может быть электромагнитное реле, электромотор, цепь из светодиодов, электромагнит и пр.
В даташите производитель микросхемы ULN2003A хвастается, что ток нагрузки каждого выхода может достигать 500 мА (0,5А), что собственно, не мало. Тут многие из нас умножат 0,5А на 7 выходов и получат суммарный ток в 3,5 ампера. Да, здорово! НО. Если микросхема и сможет прокачать через себя такой существенный ток, то на ней можно будет жарить шашлык…
На самом деле, если задействовать все выходы и пустить в нагрузку ток, то выжать без вреда для микросхемы можно будет около ~80 – 100мА на канал. Опс. Да, чудес не бывает.
- Вот схема подключения ULN2003A к выходам триггера К561ТМ2.
- Есть ещё одна широко распространённая микросхема, которую можно использовать – это ULN2803A.
У неё уже 8 входов/выходов. Я её выдрал с платы убитого промышленного контроллера и решил поэкспериментировать.
Схема подключения ULN2803A. Для индикации включения реле можно дополнить схему цепью из светодиода HL1 и резистора R1.
- Вот так это выглядит на макетке.
Кстати, микросхемы ULN2003, ULN2803 допускают объединение выходов для увеличения максимально-допустимого выходного тока. Это может потребоваться, если нагрузка потребляет более 500 мА. Соответствующие входы также объединяются.
Вместо электромагнитного реле в схеме можно применить твёрдотельное реле (SSR — Solid State Relay). В таком случае, схему можно существенно упростить.
Например, если применить твёрдотельное реле CPC1035N, то отпадает необходимость в питании устройства от 12 вольт. Достаточно будет 5-вольтового блока питания для питания всей схемы.
Также отпадает необходимость в интегральном стабилизаторе напряжения DA1 (78L05) и конденсаторах С3, С4.
Вот так твёрдотельное реле CPC1035N подключается к триггеру на К561ТМ2.
Несмотря на свою миниатюрность, твёрдотельное реле CPC1035N может коммутировать переменное напряжение от 0 до 350 V, при токе нагрузки до 100 mA. Иногда этого достаточно, чтобы управлять маломощной нагрузкой.
Можно применить и отечественные твёрдотельные реле, я, например, экспериментировал с К293КП17Р.
Выдрал его с платы охранной сигнализации. В данной релюшке, кроме самого твёрдотельного реле, есть ещё и транзисторная оптопара. Её я не использовал – оставил выводы свободными. Вот схема подключения.
Возможности К293КП17Р весьма неплохие. Может коммутировать постоянное напряжение отрицательной и положительной полярности в пределах -230…230 V при токе нагрузки до 100 mA. А вот с переменным напряжением работать не может. То есть постоянное напряжение к выводам 8 – 9 можно подводить как угодно, не заботясь о полярности. Но вот переменное напряжение подводить не стоит.
Дальность работы
Чтобы приёмный модуль надёжно принимал сигналы от пульта–передатчика, к контакту ANT на плате нужно припаять антенну. Желательно, чтобы длина антенны была равна четверть длины волны передатчика (то бишь λ/4). Так как передатчик брелока работает на частоте в 315 МГц, то по формуле длина антенны составит ~24 см. Вот расчёт.
- Где f – частота (в Гц), следовательно 315 000 000 Гц (315 Мегагерц);
- Скорость света С – 300 000 000 метров в секунду (м/c);
- λ – длина волны в метрах (м).
- Те, кто не знает, как переводить приставки Мега- и Кило- в нули, прочтите статью о сокращённой записи численных величин.
Чтобы узнать, на какой частоте работает пульт–передатчик, вскрываем его и ищем на печатной плате фильтр на ПАВ (Поверхностно–акустических волнах). На нём обычно указана частота. В моём случае это 315 МГц.
При необходимости антенну можно и не припаивать, но дальность действия устройства сократится.
В качестве антенны можно применить телескопическую антенну от какого–нибудь неисправного радиоприёмника, магнитолы. Будет очень даже круто .
Дальность, при которой приёмник устойчиво принимает сигнал от брелока небольшое. Опытным путём я определил расстояние в 15 – 20 метров. С преградами это расстояние уменьшается, а вот при прямой видимости дальность будет в пределах 30 метров. Ожидать чего-то большего от такого простого устройства глупо, схемотехника его весьма проста.
Шифрование или «привязка» пульта к приёмнику
Изначально, брелок и приёмный модуль незашифрованы. Иногда говорят, что не «привязаны».
Если купить и использовать два комплекта радиомодулей, то приёмник будет срабатывать от разных брелоков. Аналогично будет и с приёмным модулем. Два приёмных модуля будут срабатывать от одного брелока. Чтобы этого не происходило, применяется фиксированная кодировка. Если приглядеться, то на плате брелока и на плате приёмника есть места, где можно напаять перемычки.
Выводы от 1 до 8 у пары микросхем кодеров/декодеров (PT2262/PT2272) служат для установки кода. Если приглядется, то на плате пульта управления рядом с выводами 1 – 8 микросхемы есть лужёные полоски, а рядом с ними буквы H и L. Буква H – означает High («высокий»), то есть высокий уровень.
Если паяльником накинуть перемычку от вывода микросхемы к полоске с пометкой H, то мы тем самым подадим высокий уровень напряжения в 5V на микросхему.
Буква L соответственно означает Low («низкий»), то есть, накидывая перемычку c вывода микросхемы на полоску с буквой L, мы устанавливаем низкий уровень в 0 вольт на выводе микросхемы.
На печатной плате не указан нейтральный уровень – N. Это когда вывод микросхемы как бы «висит» в воздухе и ни к чему не подключен.
Таким образом, фиксированный код задаётся 3 уровнями (H, L, N).
При использовании 8 выводов для установки кода получается 38 = 6561 возможных комбинаций! Если учесть, что четыре кнопки у пульта также участвуют в формировании кода, то возможных комбинаций становится ещё больше. В результате случайное срабатывание приёмника от чужого пульта с иной кодировкой становится маловероятным.
На плате приёмника пометок в виде букв L и H нет, но тут нет ничего сложного, так как полоска L подключена к минусовому проводу на плате. Как правило, минусовой или общий (GND) провод выполняется в виде обширного полигона и занимает на печатной плате большую площадь.
Полоска H подключается к цепям с напряжением в 5 вольт. Думаю понятно.
Я установил перемычки следующим образом. Теперь мой приёмник от другого пульта уже не сработает, он узнает только «свой» брелок. Естественно, распайка должна быть одинаковой как у приёмника, так и у пульта-передатчика.
- Кстати, думаю, вы уже сообразили, что если потребуется управлять несколькими приёмниками от одного пульта, то просто распаиваем на них такую же комбинацию кодировки, как на пульте.
- Стоит отметить, что фиксированный код не сложно взломать, поэтому не рекомендую использовать данные приёмо-передающие модули в устройствах доступа.
- Главная » Радиоэлектроника для начинающих » Текущая страница
- Также Вам будет интересно узнать:
-
Ремонтируем люстру с пультом управления.
-
Ремонт точки доступа Wi-Fi.
Питание и управление
Для питания наших логических элементов необходим стабилизированный источник питания напряжением +5В и нагрузочной способностью до 2А. В качестве стабилизатора лучше всего использовать микросхему КР142ЕН5.
Она обеспечивает достаточную стабильность выходного напряжения и осуществляет фильтрацию помех, амплитуда которых может достигать 1В. При установке ее на дополнительный радиатор максимальный ток нагрузки составляет около 2А.
Помимо этого микросхема имеет защиту от короткого замыкания.
Впрочем, если вам посчастливилось достать готовый блок питания, а очень хороши блоки питания от IBM PC, то лучше воспользоваться им.
Но в любом случае для сглаживания неизбежно возникающих пульсаций нужно не забывать вставлять в схему питания конденсаторы.
Управление исполнительными механизмами
Блок управления исполнительными механизмами должен по команде включать и выключать заданное исполнительное устройство – электродвигатель, лампу, реле и т.п.
Для включения маломощных устройств может использоваться транзисторная схема коммутации (рис.3).
Рис.3. Транзисторный ключ
В качестве VT1 можно использовать транзистор KT817, а Rб=100 Oм. Предельный ток нагрузки — 3А (с радиатором) или 1А (без радиатора).
Для включения более мощных исполнительных механизмов (например, электродвигателей) можно использовать следующую схему на составном транзисторе:
Рис.4. Составной ключ
Коммутатор обеспечивает ток нагрузки до 10А. При этом в качестве силового транзистора VT2 используется кремневый меза-планарный составной транзистор КТ827Б. Некоторые параметры этого транзистора:
В схеме транзистор работает со степенью насыщения 3 и выше. Запуск схемы осуществляется подачей уровня логического 0 на базу VT1 через R1. Таким образом, входное сопротивление схемы составляет ~5k, что дает возможность подключать ее непосредственно к выходам ТТЛ микросхем.
Микросхема КР142ЕН5А – это трехвыводный стабилизатор с фиксированным выходным напряжением 5 вольт. Он широко применяется применение в радиоэлектронных устройствах в качестве источниках питания логических систем.
|
|
Электрические характеристики
Все параметры приведены при Vin=10В, Iout=500mA, 0°C