Что такое пид-регулятор

Назад в библиотеку

Как следует из названия, в этой статье мы дадим точное представление о структуре и работе ПИД-контроллера. Однако сначала, давайте познакомимся с ПИД-контроллерами.

ПИД-регуляторы находятся в широком диапазоне применений для управления промышленными процессами. Приблизительно 95% операций с замкнутым контуром в промышленной автоматизации используют ПИД-регуляторы. PID обозначает Пропорционально-интегральная-диференциальная составляющая. Эти три контроллера объединены таким образом, что он создает управляющий сигнал.

Что такое ПИД-регулятор

В качестве контроллера обратной связи он обеспечивает выход управления на желаемых уровнях. ПИД-регулирование осуществлялось с помощью аналоговых электронных компонентов, перед изобретением микропроцессоров.

Но сегодня все ПИД-контроллеры обрабатываются микропроцессорами. ПрограммируемыеПрограммируемые логические контроллеры также имеют встроенные настройки ПИД-регулятора.

Благодаря гибкости и надежности ПИД-регуляторов, они традиционно используются в системах управления технологическим процессом.

Работа ПИД-регулятора

При использовании недорогого простого контроллера возможны только два состояния управления, например, полностью ВКЛ или полностью ВЫКЛ. Он используется для настроек с ограничением контроля, в котором эти два состояния управления достаточно для целей управления. Однако характер этого контроля ограничивает его использование и, следовательно, заменяется ПИД-контроллерами.

ПИД-регулятор поддерживает выход таким образом, что между переменной процесса и заданной точкой / желаемым выходом с помощью операций замкнутого контура имеется нулевая ошибка. ПИД использует три основных поведения управления, которые объясняются ниже.

П-контроллер:

Что такое ПИД-регулятор

Пропорциональный или П-регулятор дает выход, который пропорционален текущей ошибке e (t). Он сравнивает желаемую или заданную точку с фактическим значением или значением процесса обратной связи. Полученная ошибка умножается на пропорциональную константу, чтобы получить выход. Если значение ошибки равно нулю, то выход этого контроллера равен нулю.

Что такое ПИД-регулятор

Этот контроллер требует смещения или ручной сброс при использовании отдельно. Это происходит потому, что он никогда не достигает состояния устойчивого состояния. Он обеспечивает стабильную работу, но всегда поддерживает постоянную ошибку. Скорость реакции возрастает при увеличении пропорциональной константы Kр.

И-контроллер

Что такое ПИД-регулятор

Из-за ограничения П-контроллера, где всегда существует смещение между переменной процесса и заданным значением, необходим И-контроллер, который обеспечивает необходимые действия для устранения ошибки установившегося состояния. Он интегрирует ошибку в течение периода времени, пока значение ошибки не достигнет нуля. Он содержит значение для конечного устройства управления, при котором ошибка становится равной нулю.

Интегральное управление уменьшает его выход, когда происходит отрицательная ошибка. Он ограничивает скорость реакции и влияет на стабильность системы. Скорость реакции увеличивается за счет уменьшения интегрального усиления Ki.

Что такое ПИД-регулятор

На приведенном выше рисунке, когда коэффициент усиления И-контроллера уменьшается, ошибка установившегося режима также продолжает уменьшаться. В большинстве случаев контроллер ПИ используется, в частности, когда требуется высокая скорость ответа.

При использовании ПИ-регулятора выход И-контроллера ограничен некоторым диапазоном для преодоления интегральных условий, когда интегральный выход растет даже при нулевом состоянии ошибки из-за нелинейности на установке.

Д-контроллер

Что такое ПИД-регулятор

И-контроллер не может предсказать будущее поведение ошибки. Поэтому он реагирует нормально после изменения заданного значения. Д-контроллер преодолевает эту проблему, ожидая будущего поведения ошибки. Его выход зависит от скорости изменения погрешности за время, умноженное на постоянную производной. Это дает начало запуска для выхода, тем самым увеличивая системный отклик.

Что такое ПИД-регулятор

На приведенном выше рисунке ответ контроллера Д больше, по сравнению с контроллером ПИ, а также время установления выходного сигнала уменьшается. Это улучшает стабильность системы за счет компенсации фазового запаздывания, вызванного И-контроллером. Увеличение производного усиления увеличивает скорость реакции..

Итак, наконец, мы заметили, что, объединив эти три контроллера, мы получим желаемый ответ для системы. Различные производители разрабатывают различные алгоритмы ПИД.

Методы настройки ПИД-регулятора

Перед началом работы ПИД-регулятора он должен быть настроен на динамику контролируемого процесса.

Дизайнеры дают значения по умолчанию для параметров П, И, Д, и эти значения не могут дать желаемую производительность, а иногда приводят к нестабильности и медленным характеристикам управления.

Разработаны различные методы настройки для настройки ПИД-регуляторов и требуют от оператора большого внимания для выбора наилучших значений пропорциональных, интегральных и диференциальных коэффициентов. Некоторые из них приведены ниже.

Метод проб и ошибок: это простой способ настройки ПИД-регулятора. Пока система или контроллер работают, мы можем настроить контроллер.

В этом методе сначала нужно установить значения Ki и Kd в нуль и увеличить пропорциональный коэффициент (Kp), пока система не достигнет колебательного поведения.

Как только он осциллирует, отрегулируйте Ki (интегральный термин), чтобы колебания остановились и, наконец, отрегулировали Д, чтобы получить быстрый отклик.

Технологическая кривая технологического процесса: это метод настройки с открытым циклом. Он производит ответ, когда к системе применяется шаг ввода. Первоначально мы должны вручную вводить некоторые данные управления в систему и записывать кривую ответа.

После этого нам нужно рассчитать наклон, неподвижное время, время нарастания кривой и, наконец, подставить эти значения в уравнениях П, И и Д, чтобы получить значения коэффициента усиления ПИД.

Что такое ПИД-регулятор

Метод Zeigler-Nichols: Zeigler-Nichols предложил методы замкнутого контура для настройки ПИД-регулятора. Это метод непрерывного циклирования и метод демпфирования колебаний.

Процедуры для обоих методов одинаковы, но поведение колебаний различно. При этом сначала нужно установить постоянную p-контроллера, Kp на определенное значение, а значения Ki и Kd равны нулю.

Пропорциональный коэффициент усиления увеличивается до тех пор, пока система не будет колебаться с постоянной амплитудой.

Усиление, при котором система производит постоянные колебания, называется конечным усилением (Ku), а период колебаний называется предельным периодом (Pc). Как только это достигнуто, мы можем ввести значения P, I и D в ПИД-контроллере по таблице Zeigler-Nichols, зависит от контроллера, используемого как P, PI или PID, как показано ниже.

Что такое ПИД-регулятор

Структура ПИД-регулятора

ПИД-регулятор состоит из трех членов, а именно пропорционального, интегрального и диференциального. Объединенная работа этих трех контроллеров дает стратегию управления процессом контроля.

ПИД-регулятор управляет переменными процесса, такими как давление, скорость, температура, расход и т. д.

В некоторых приложениях используются ПИД-регуляторы в каскадных схемах, где для достижения контроля используются два или более ПИД.

Что такое ПИД-регулятор

На приведенном выше рисунке показана структура ПИД-регулятора. Он состоит из блока PID, который дает свой вывод для обработки блока. Процесс / установка состоит из конечных устройств управления, таких как исполнительные механизмы, регулирующие клапаны и другие управляющие устройства для управления различными процессами промышленности / установки.

Сигнал обратной связи от технологической установки сравнивается с уставкой или сигналом u (t), и соответствующий сигнал ошибки e (t) подается на алгоритм ПИД-регулирования. Согласно пропорциональным, интегральным и диференциальным расчетам в алгоритме, контроллер производит комбинированный ответ или управляемый выход, который применяется к устройствам управления установкой.

Все управляющие приложения не нуждаются во всех трех элементах управления. Комбинации, такие как элементы управления PI и PD, очень часто используются в практических приложениях.

Рекомендации по настройке ПИД-регуляторов в контроллере АГАВА 6432.20 — ООО КБ АГАВА

Введение

1. Согласно теории автоматического регулирования параметры регулятора однозначно связаны с характеристиками объекта регулирования.

Поскольку изготовитель автоматики не имеет информации об этих характеристиках, заводские настройки контроллера выбраны для некого абстрактного объекта, и задача наладчика состоит в том, чтобы подобрать оптимальные параметры регулятора для конкретного котла или печи.

Ниже приведены две методики настройки ПИД-регулятора:

Методика №1 — параметры объекта оцениваются в процессе самой настройки; Методика №2 — параметры объекта определяются путем анализа переходной характеристики.

2. В программе контроллера АГАВА 6432.20 (с версии 08.30) реализованы два независимых алгоритма регулирования:

1) позиционный ПИД-регулятор для исполнительного механизма (ИМ) с аналоговым управлением (например, ЧРП):

Что такое ПИД-регулятор

2) скоростной ПИД-регулятор для ИМ типа МЭО:

Что такое ПИД-регулятор

где: outn – выходной сигнал ПИД регулятора от 0 до 100% значения тока, выдаваемое на исполнительный механизм, в текущем периоде регулирования; Kp – коэффициент пропорциональности; Kd – коэффициент дифференцирования, с; Ki – коэффициент интегрирования, с; En – текущее значение ошибки (от -100 до 100 %), En-1 –значение ошибки в предыдущем периоде регулирования (от -100 до 100 %), En-2 –значение ошибки на n-2 шаге (от -100 до 100 %). T – период регулирования, с.

Примечание. Длительность импульса, выдаваемая на исполнительный механизм типа МЭО в скоростном ПИД-регуляторе равна:

Что такое ПИД-регулятор

где: tn — длительность управляющего импульса на МЭО yn – рассчитанная длительность текущего импульса, %; Тмэо – время полного хода исполнительного механизма, с;

МЕТОДИКА №1

Суть предлагаемой методики заключается в том, что параметры объекта непосредственно не определяются, а в скрытой форме оцениваются в процессе самой настройки, когда контур регулирования уже замкнут, но ещё не настроен.

ВНИМАНИЕ!!!

Настройку параметров регулирования следует производить после наладки режимов горения и соотношения топливо/воздух. Указанные операции осуществляют при отключенных регуляторах.

Последовательность настройки

  1. Определяют значение Tmeo. Для этого при помощи секундомера замеряют время хода исполнительного механизма в зоне регулирования;

    Примечание. для ЧРП допускается время хода взять равным “Времени разгона ЧРП” из настроек ЧРП.

  2. Рассчитывают значение периода регулирования, исходя из соотношения: Т=(0,05÷0,1)Тmeo

  3. В соответствующих пунктах меню настроек контроллера устанавливают рассчитанное и измеренное значения T и Tmeo.

    Примечание. Для ЧРП устанавливают только T.

  4. Переводят выбранный контур в режим П-регулятора, для чего отключают интегральную и дифференциальную компоненты, т.е. устанавливают значение Ti максимально возможным, а значение Td — минимально возможным.

  5. Контур регулирования выводят на границу устойчивости. Для этого постепенно увеличивают коэффициент пропорциональности Kp до критического значения (Kp крит), при котором контур войдет в режим колебаний (см. рис. 1).

    Что такое ПИД-регулятор Рис.1

  6. Определяют период колебаний и критическое значение Kp крит. Далее, по приведённым ниже формулам, рассчитывают требуемые значения параметров:

    • для П-регулятора: Kp = 0,5 Kp крит;
    • для ПИ-регулятора: Kp = 0,45 Kp крит и Ti = 0,83Tк;
    • для ПИД-регулятора: Kp = 0,60 Kp крит, Ti = 0,50Tк и Td = 0,125Tк.
Читайте также:  Клеммники для соединения проводов и кабелей

Замечания, касающиеся выбора значения T:

  1. Увеличение периода регулирования T по отношению к Tmeo (п.2) приводит к росту динамической ошибки. С другой стороны, чрезмерно заниженное абсолютное значение T не позволяет минимизировать величину статической ошибки.
  2. Если расчетное значение T (п.2) получилось слишком малым необходимо применить более медленный исполнительный механизм, или изменить размеры сопрягающих рычагов.
  • МЕТОДИКА №2
  • В основе данной методики лежит анализ переходной характеристики (Рис 1).
  • Сигнал, вырабатываемый ПИД-регулятором, определяется тремя компонентами:
Kp коэффициент пропорциональности Настройка(1 этап)
Ki коэффициент интегрирования Настройка(3 этап)
Kd коэффициент дифференцирования Настройка(2 этап)

ВНИМАНИЕ!!!

Настройку параметров регулирования следует производить после наладки режимов горения и соотношения топливо/воздух. Указанные операции осуществляют при отключенных регуляторах.

Этап 1. Настройка пропорциональной компоненты ПИД-регулятора

Перед настройкой пропорциональной компоненты регулятора интегральная и дифференциальная компоненты отключаются, либо значение Ki устанавливается максимально возможным, а значение Kd — минимально возможным.

Устанавливают первоначальное значение коэффициента пропорциональности Kp, Tmeo, T, руководствуясь «Рекомендациями по настройке ПИД-регуляторов в контроллере «АГАВА 6432.20» или используя заводские настройки контроллера.

  1. Экспериментально снимается (если это допустимо по технологическим условиям) и регистрируется при помощи программы » АГАВА РТ » характеристика переходного процесса.

  2. Возможные варианты кривых переходной характеристики приведены на рис.2.

Что такое ПИД-регулятор Рис.2

Переходная характеристика 1 Значение коэффициента пропорциональности очень велико, переходная характеристика (а значит, и настройка регулятора) далека от оптимальной. Коэффициент пропорциональности следует уменьшить.

При этом надо иметь в виду, что варьировать пропорциональную компоненту можно двумя переменными: в явном виде, изменяя Kp и подбирая период регулирования T.

Исходное значение T рассчитывают по формуле:

Т=(0,05÷0,1)Тmeo

Переходная характеристика 2 Для этой кривой характерны затухающие колебания (3-5 периодов). Если в дальнейшем предполагается использовать и дифференциальную компоненту ПИД-регулятора, то выбранное значение коэффициента пропорциональности является оптимальным. Для этого случая настройка пропорциональной компоненты считается законченной.

Если дифференциальная компонента использоваться не будет, то рекомендуется еще уменьшить Kp так, чтобы получились переходные характеристики типа 3 или 4.

Переходная характеристика 3 В этой переходной характеристике имеет место небольшой выброс и быстро затухающие колебания (1-2 периода).

Этот тип переходной характеристики обеспечивает хорошее быстродействие и быстрый выход на заданную температуру.

В большинстве случаев его можно считать оптимальным, если в системе допускаются выбросы при переходе с одной уставки на другую или при резком изменении нагрузок, например, при изменении расхода пара.

Выбросы можно устранить дополнительным уменьшением Kp так, чтобы получилась переходная характеристика типа 4.

Переходная характеристика 4 Регулируемый параметр плавно подходит к установившемуся значению без выбросов и колебаний. Эта тип переходной характеристики также можно считать оптимальным, однако быстродействие регулятора несколько снижено.

Переходная характеристика 5 Сильно затянутый подход к установившемуся значению говорит о том, что коэффициент пропорциональности чрезмерно занижен. Динамическая и статическая точность регулирования здесь мала. Рекомендуется увеличить значение Kp.

Следует обратить внимание на два обстоятельства. Во-первых, во всех рассмотренных выше случаях установившееся значение параметра в системе не совпадает со значением уставки. Чем меньше коэффициент пропорциональности, тем больше остаточное рассогласование.

  1. Во-вторых, чем меньше коэффициент пропорциональности, тем больше длительность переходных процессов.
  2. Однако остаточное рассогласование, характерное для чисто пропорциональных регуляторов (П-регуляторов), минимизируется интегральной компонентой регулятора (ПИ-регулятор).
  3. Выводы:
  1. Во всех рассмотренных выше случаях установившееся значение параметра в системе не совпадает со значением уставки. Чем меньше коэффициент пропорциональности, тем больше остаточное рассогласование.
  2. Чем меньше коэффициент пропорциональности, тем больше длительность переходных процессов.
  3. Остаточное рассогласование, характерное для чисто пропорциональных регуляторов (П-регуляторов), минимизируется интегральной компонентой регулятора (ПИ-регулятор).

Этап 2. Настройка коэффициента дифференцирования Кd

Что такое ПИД-регулятор Рис.3

  1. Этот этап присутствует только в том случае, если применяется полнофункциональный ПИД-регулятор. Если дифференциальная компонента применяться не будет (используется ПИ-регулятор), то следует сразу перейти к этапу 3 (Настройка интегральной компоненты Кi).
  2. Устанавливают первоначальное значение Кd. При этом можно использовать «Рекомендации по настройке ПИД-регуляторов в контроллере «АГАВА 6432.20» или применить заводские настройки контроллера.
  3. Предположим, что на этапе 1 установлен коэффициент пропорциональности, соответствующий переходной характеристике типа 1 показанной на рис.3, в которой присутствуют затухающие колебания. В этом случае следует выбрать такое значение Кd, чтобы переходная характеристика имела вид кривой 2 на рис.3. В качестве первого приближения, постоянную времени дифференцирования можно рассчитать по формуле:

    Кd = 0,2 x Tk

    где Tk — период колебания (Рис.1).

Вывод: Дифференциальная компонента устраняет затухающие колебания и делает переходную характеристику, похожей на тип 2 (см. рис.3). Это значит, что динамическая точность регулирования при наличии дифференциальной компоненты (ПД-регулятор) может быть выше, чем для П-регулятора.

  • Этап 3. Настройка величины коэффициента интегрирования Кi
  • После настройки пропорциональной и, при необходимости и дифференциальной компоненты, получается переходная характеристика 1, показанная на рис 4.
  • Что такое ПИД-регулятор Рис.4
  1. Начальное значение постоянной времени интегрирования следует установить, руководствуясь «Рекомендациями по настройке ПИД-регуляторов в контроллере «АГАВА 6432.20» или используя заводские настройки контроллера.
  2. Возможные варианты кривых приведены на рис.4.

Переходная характеристика 1 Значение Кi выбрано слишком большим, следует уменьшить значение коэффициента интегрирования Кi.

Переходная характеристика 2 Такая кривая получается при чрезмерно большой величине коэффициента интегрирования. Выход на уставку оказывается затянутым и длится примерно (3…4) х Кi. В этом случае рекомендуется уменьшить значение коэффициента интегрирования Кi.

Переходная характеристика 4 Получается при слишком малой величине коэффициента интегрирования. Выход на уставку также длится (3…4) x Кi. Если коэффициента интегрирования уменьшить еще, то в системе могут возникнуть колебания. Следует увеличить значение коэффициента интегрирования Кi.

Переходная характеристика 3 Значение коэффициента интегрирования Кi выбрано оптимально.

Выводы: Интегральная компонента позволяет минимизировать остаточное рассогласование между установившимся в системе значением регулируемого параметра и уставкой.

П-, ПИ-, ПД-, ПИД — регуляторы

  • В данном разделе приведены описания алгоритмов работы и законы регулирования непрерывных П-, ПИ-, ПД-, ПИД-регуляторов с различными структурами выходного сигнала — аналоговым выходом, дискретным (импульсным) выходом или ШИМ-выходом (широтно импульсным модулированным сигналом).
  • Классификация систем автоматического регулирования (САР) приведена в таблице 1 в «Классификация систем автоматического регулирования».
  • Типовые регуляторы и регулировочные характеристики
  • Для регулирования объектами управления, как правило, используют типовые регуляторы, названия которых соответствуют названиям типовых звеньев (описание типовых звеньев представлено в разделе 2.4):
    1. П-регулятор, пропорциональный регулятор Передаточная функция П-регулятора: Wп(s) = K1. Принцип действия заключается в том, что регулятор вырабатывает управляющее воздействие на объект пропорционально величине ошибки (чем больше ошибка Е, тем больше управляющее воздействие Y).

    2. И-регулятор, интегрирующий регулятор Передаточная функция И-регулятора: Wи(s) = К0/s. Управляющее воздействие пропорционально интегралу от ошибки.
    3. Д-регулятор, дифференцирующий регулятор ПередаточнаяфункцияД-регулятора: Wд(s) = К2*s. Д-регуляторгенерирует управляющее воздействие только при изменении регулируемой веричины: Y= K2 * dE/dt.

      На практике данные простейшие П, И, Д регуляторы комбинируются в регуляторы вида ПИ, ПД, ПИД (см. рис.1):

Что такое ПИД-регулятор

Рисунок 1 — Виды непрерывных регуляторов

В зависимости от выбранного вида регулятор может иметь пропорциональную характеристику (П), пропорционально-интегральную характеристику (ПИ), пропорционально-дифференциальную характеристику (ПД) или пропорционально-интегральную (изодромную) характеристику с воздействием по производной (ПИД-регулятор).

  1. ПИ-регулятор, пропорционально-интегральный регулятор (см. рис.3.18.а)ПИ-регулятор представляет собой сочетание П- и И-регуляторов. Передаточная функция ПИ-регулятора: Wпи(s) = K1 + K0/s.
  2. ПД-регулятор, пропорционально-дифференциальный регулятор (см. рис.3.18.б)ПД-регулятор представляет собой сочетание П- и Д-регуляторов. Передаточная функция ПД-регулятора: Wпд(s) = K1 + K2 s.
  3. ПИД-регулятор, пропорционально-интегрально-дифференциальный регулятор (см. рис.3.18.в)

ПИД-регулятор представляет собой сочетание П-, И- и Д-регуляторов. Передаточная функция ПИД-регулятора: Wпид(s) = K1 + K0 / s + K2 s.

Наиболее часто используется ПИД-регулятор, поскольку он сочетает в себе достоинства всех трех типовых регуляторов.

Структурные схемы непрерывных регуляторов

В данном разделе приведены структурные схемы непрерывных регуляторов с аналоговым выходом -рис.2, с импульсным выходом — рис.3 и с ШИМ (широтно импульсным модулированным) выходом -рис.4.

В процессе работы система автоматического регулирования АР (регулятор) сравнивает текущее значение измеряемого параметра Х, полученного от датчика Д, с заданным значением (заданием SP) и устраняет рассогласование регулирования E (B=SP-PV). Внешние возмущающие воздействия Z также устраняются регулятором. Работа приведенных структурных схем отличается методом формирования выходного управляющего сигнала регулятора.

Непрерывный регулятор с аналоговым выходом

Структурная схема непрерывного регулятора с аналоговым выходом приведена на рис.2.

Выход Y регулятора АР (например, сигнал 0-20мА, 4-20мА, 0-5мА или 0-10В) воздействует через электропневматический преобразователь Е/Р сигналов (например, с выходным сигналом 20-100кПа) или электропневматический позиционный регулятор на исполнительный элемент К (регулирующий орган).

Что такое ПИД-регулятор

  1. Рисунок 2 — Структурная схема регулятора с аналоговым выходом
  2. где:АР — непрерывный ПИД-регулятор с аналоговым выходом,SP — узел формирования заданной точки,PV=X- регулируемый технологический параметр,Е — рассогласование регулятора,Д — датчик,
  3. НП — нормирующий преобразователь (в современных регуляторах является входным устройством)

Y — выходной аналоговый управляющий сигнал Е/Р — электропневматический преобразователь, К — клапан регулирующий (регулирующий орган).

Непрерывный регулятор с импульсным выходом

Структурная схема непрерывного регулятора с импульсным выходом приведена на рис.3.

Выходные управляющие сигналы регулятора — сигналы Больше и Меньше (транзистор, реле, симистор) через контактные или бесконтактные управляющие устройства (П) воздействуют на исполнительный элемент К (регулирующий орган).

Что такое ПИД-регулятор

  • Рисунок 3 — Структурная схема регулятора с импульсным выходом
  • где:АР — непрерывный ПИД-регулятор с импульсным выходом,SP — узел формирования заданной точки,PV=X- регулируемый технологический параметр,Е — рассогласование регулятора,Д — датчик,НП — нормирующий преобразователь (в современных регуляторах является входным устройством) ИМП — импульсный ШИМ модулятор, преобразующий выходной сигнал Y в последовательность импульсов со скважностью, пропорциональной выходному сигналу: Q=Y/100. Сигналы Больше и Меньше — управляющие воздействия,П — пускатель контактный или бесконтактный,
  • К — клапан регулирующий (регулирующий орган).
  • Непрерывный регулятор с ШИМ (широтно импульсным модулированным) выходом

Структурная схема непрерывного регулятора с ШИМ (широтно импульсным модулированным) выходом приведена на рис.4.

Выходной управляющий сигнал регулятора (транзистор, реле, симистор) через контактные или бесконтактные управляющие устройства (П) воздействуют на исполнительный элемент К (регулирующий орган).

Непрерывные регуляторы с ШИМ выходом широко применяются в системах регулирования температуры, где выходной управляющий симисторный элемент (или твердотельное реле, пускатель) воздействуют на термоэлектрический нагреватель ТЭН, или вентилятор.

Что такое ПИД-регулятор

  1. Рисунок 4 — Структурная схема регулятора с ШИМ выходом
  2. АР — непрерывный ПИД-регулятор с импульсным ШИМ выходом,SP — узел формирования заданной точки,PV=X- регулируемый технологический параметр,Е — рассогласование регулятора,Д — датчик,НП — нормирующий преобразователь (в современных регуляторах является входным устройством) ШИМ — импульсный ШИМ модулятор, преобразующий выходной сигнал Y в последовательность импульсов со скважностью, пропорциональной выходному сигналу: Q=Y/100.П — пускатель контактный или бесконтактный,
  3. К — клапан регулирующий (регулирующий орган).

Согласование выходных устройств непрерывных регуляторов

Выходной сигнал регулятора должен быть согласован с исполнительным механизмом и исполнительным устройством.

В соответствии с видом привода и исполнительным механизмом необходимо использовать выходное устройство непрерывного регулятора соответствующего типа, см. таблицу 1.

Таблица 1 — Согласование выходных устройств непрерывных регуляторов

Выходное устройство непрерывного регулятора Тип выходного устройства Закон регулирования Исполнительный механизм или устройство Вид привода Регулирующий орган
Аналоговый выход ЦАП с выходом 0-5мА, 0-20мА, 4-20мА, 0-10В П-, ПИ-,ПД-, ПИД-закон Преобразователи и позиционные регуляторы электро-пневматические и гидравлические Пневматические исполнительные приводы (с сжатым воздухом в качестве вспомогательной энергии) и электропневматические преобразователи сигналов или электропневматические позиционные регуляторы, электрические (частотные привода)
Импульсный выход Транзистор, реле, симистор П-, ПИ-, ПД-, ПИД-закон Контактные (реле) и бесконтактные (симисторные) пускатели Электрические приводы (с редуктором), в т. ч. реверсивные
ШИМ выход Транзистор, реле, симистор П-, ПИ-, ПД-, ПИД-закон Контактные (реле) и бесконтактные (симисторные) пускатели Термоэлектрический нагреватель(ТЭН) и др.

Реакция регулятора на единичное ступенчатое воздействие

Одной из динамических характеристик обьекта управления является его переходная характеристика -реакция обьекта на единичное ступенчатое воздействие (см. Динамические характеристики), например, изменение заданной точки регулятора.

В данном разделе приведены переходные процессы системы управления при единичном ступенчатом изменении заданной точки при использовании регуляторов с различным законом регулирования.

Если на вход регулятора подается скачкообразная функция изменения заданной точки — см. рис. 5, то на выходе регулятора возникает реакция на единичное ступенчатое воздействие в соответствии с характеристикой регулятора в функции времени.

Рисунок 5 — Единичное ступенчатое воздействие скачкообразная функция изменения заданной точки регулятора

Параметрами П-регулятора являются коэффициент усиления Кр и рабочая точка Y0. Рабочая точка Y0 определяется как значение выходного сигнала, при котором рассогласование регулируемой величины равно нулю. При влиянии возмущающих воздействий возникает, в зависимости от Y0, отклонение регулирования.

Рисунок 6 — П-регулятор. Реакция на единичное ступенчатое воздействие

ПИ-регулятор, реакция на единичное ступенчатое воздействие

В отличие от П-регулятора у ПИ-регулятора, благодаря интегральной составляющей, исключается отклонение регулирования.

Параметром интегральной составляющей является время интегрирования Ти.

  • Рисунок 7 — ПИ-регулятор. Реакция на единичное ступенчатое воздействие
  • У ПД-регуляторов пропорциональная составляющая накладывается на затухающую дифференциальную составляющую.
  • Д-составляющая определяется через усиление упреждения Уд и время дифференцирования Тд.

Рисунок 8 — ПД-регулятор. Реакция на единичное ступенчатое воздействие

Б лагодаря дополнительному подключению Д-составляющей ПИД-регулятор достигает улучшения динамического качества регулирования.

См. ПИ-регулятор, ПД-регулятор.

Рисунок 9 — ПИД-регулятор. Реакция на единичное ступенчатое воздействие

ПИД-регулятор для автоматизации процессов

Что же такое ПИД-регулятор? Прежде всего это алгоритм, который может быть реализован как программно, так и аппаратно. Сегодня мы рассмотрим ПИД-регулятор как законченное устройство, которое может быть использовано для построения систем управления и автоматики. В качестве примера возьмём устройство компании «ОВЕН»  ТРМ210. Но для начала немного теории…

Что такое ПИД-регулятор?

ПИД-регулятор относится к регуляторам непрерывного типа. Аббревиатура «ПИД» расшифровывается как «пропорционально-интегрально-дифференциальный» (регулятор) — эти три слова полностью описывают принцип его действия. Общая структурная схема управления выглядит так:

Что такое ПИД-регулятор

На вход регулятора подаётся измеренная датчиком физическая величина (температура, влажность и т.д.), регулятор в соответствии со своим алгоритмом (реализующим функцию преобразования) выдаёт управляющее воздействие. Это вызывает изменение регулируемой величины (например, температуры или влажности).

На следующем шаге регулятор снова делает замер регулируемого параметра и сравнивает эту величину с заданной, вычисляя ошибку регулирования. Новое управляющее воздействие формируется с учётом ошибки регулирования на каждом шаге. Значение величины, которое нужно поддерживать, задаётся пользователем.

Функция преобразования ПИД-регулятора выглядит следующим образом:

Что такое ПИД-регулятор,где E — ошибка регулирования (разница между заданным значением регулируемой величины и фактическим)

В этой формуле, как вы уже догадались, есь три составляющие: интегральная пропорциональная и дифференциальная. Каждая из них имеет соответствующий коэффициент (Кп, Ки, Кд). Чем больше коэффициент, тем больший вклад данная составляющая вносит в работу регулятора. Теперь разберёмся за что отвечает каждая из них.

Пропорциональная:  «Чем больше — тем больше, чем меньше  — тем меньше»

Тут всё просто. Пропорциональная составляющая просто умножает величину ошибки на свой коэффициент. Например, чем больше заданная температура по сравнению с текущей, тем большую мощность регулятор установит на обогревателе.

Интегральная:  «Учтём предыдущий опыт»

Интегральная составляющая необходима, чтобы учитывать предыдущий опыт работы регулятора и делать управление всё точнее и точнее со временем. Как известно, интеграл — это сумма. Регулятор суммирует все предыдущие значения ошибки регулирования и делает на них поправку.

Как только система выйдет на заданный режим (например, достигнет заданной температуры) ошибка регулирования будет близка к нулю и интегральная часть со временем будет всё меньше влиять на работу регулятора.

Говоря простым языком, интегральная составляющая стремиться исправить ошибки регулирования за предыдущий период.

Дифферинциальная:  «Учтём скорость изменения»

Эта составляющая берёт производную от измеряемой величины. Физический смысл производной- это скорость изменения физической величины.

Например, чем быстрее растёт (или падает) температура в системе, тем больше будет соответствующая производная.

Дифферинциальная составляющая позволяет регулятору по-разному реагировать на резкие и плавные изменения регулируемой величины в системе, тем самым избегая «раскачивания» этой величины.

ТРМ210: Функциональная схема прибора

  • Краткий экскурс в теорию закончен, вернёмся к практике и рассмотрим прибор ТРМ210, реализующий данный алгоритм.
  • Что такое ПИД-регулятор
  • Вот его функциональная схема:

Что такое ПИД-регуляторИнформация с датчика преобразуется прибором с помощью шкалы масштабирования, проходит фильтрацию и коррекцию. Это необходимо, чтоб ПИД-алгоритм получил измеренное значение в удобном и понятном для него виде.

Значение измеренной величины отображается на дисплее прибора.

Управляющее воздействие регулятора может быть импульсным или аналоговым. В первом случае управляющее воздействие регулятора заключается в изменении ширины генерируемых на выходе импульсов. Во втором случае регулятор выдаёт сигнал унифицированного напряжения в диапазоне 0…10 В или тока в диапазоне 4…20 мА. С помощью этих сигналов можно управлять практически любым устройством.

В ТРМ210 предусмотрен блок сигнализации, который сообщает о выходе физической величины за заданные пределы, замыкая дискретный выход, который, например, может «зажигать» лампу «Авария».

Также в приборе имеется блок регистратора, который может передавать измеренное значение физической величины любому другому прибору или устройству с помощью токового сигнала 4…20 мА.

В дополнение ко всему выше перечисленному регулятор имеет «на борту» интерфейс RS-485, который позволяет читать с прибора значения измеряемой величины, выходной мощности регулятора и любых конфигурируемых параметров. Это может пригодиться, если нужно передавать информацию о работе прибора в диспетчерский пункт.

Пример использования

Допустим, необходимо реализовать проветривание помещения следующим образом: чем больше температура внутри, тем больше нужно открыть окно.

Для этого установим на окно привод, который будет плавно поворачиваться на заданный угол, а управляться будет сигналом тока 4…20 мА (такой управляющий сигнал поддерживают практически все подобные приводы).

То есть, если подать на привод сигнал 4 мА — он полностью закроет окно, а 20 мА — полностью его откроет.

Для измерения температуры можно взять любой из поддерживаемых ТРМ210 — это практически любые термопары и любые датчики имеющие унифицированные выходы 0…10 В и 4…20 мА.

Настройка ПИД-регулятора

Прибор ТРМ210 имеет функцию автонастройки. В этом режиме регулятор сам имитирует возмущающие воздействия, отслеживает реакцию системы и исходя из этих данных подстраивает свои коэффициенты.

Однако, таким способом настроить регулятор получается далеко не всегда, поскольку регулятор ничего не знает о реальной системе, и генерируемые им тестовые возмущения могут не совпадать с реальными возмущениями, возникающими в этой системе.

В таких случаях необходимо подобрать коэффициенты вручную. О том, как это правильно сделать мы расскажем в отдельной статье.

До свидания! Читайте LAZY SMART.

Термоконтролеры с ПИД-регулятором

Термоконтроллеры с ПИД-регулятором разработаны для высокоточного регулирования температуры в автоматических системах управления промышленными процессами.

Модели термоконтроллеров с ПИД-регулятором и их характеристики

Температурные контроллеры с функцией ПИД-регулятора отличаются рядом характеристик:

  • возможностью подключения разнообразных вариантов датчиков температуры, включая отдельные типы термометров сопротивления, термопар и др.;
  • возможностью подключения дополнительных видов датчиков: давления, влажности, тока, расхода и т.д.;
  • наличием различных выходов управления;
  • методом настройки параметров и управления работой.

Контроллеры имеют различные модификации с определенным набором параметров, что позволяет подобрать наиболее подходящий вариант. Основные модели термоконтроллеров с общим описанием характеристик представлены в таблице:

Что такое ПИД-регулятор

Возможности применения температурных контроллеров с ПИД-регулированием

Широкий модельный ряд с различными рабочими характеристики позволяет практически неограниченно применять контроллеры температуры с ПИД-регулятором в промышленности. Устройства могут интегрироваться в автоматические системы управления, в том числе совместно с ПЛК и ПК.

Термоконтроллеры применяются для управления различными технологическими процессами, связанными с температурной обработкой в энергетике, металлургии, химической промышленности, пищевом производстве и многих других.

Возможность подключения различных термодатчиков позволяет контролировать как высокотемпературные процессы, так и отрицательные значения температур, что позволяет применять термоконтроллеры с ПИД-регулятором не только при производстве, но и для контроля перевозки и хранения продуктов и материалов, а также для контроля микроклимата зданий и помещений.

Термоконтроллеры с ПИД-регулятором: решаемые задачи

Температурные контроллеры с возможностью ПИД-регулирования могут решать несколько задач одновременно:

  • обеспечение обратной связи в системах контроля температуры,
  • индикация текущего уровня контролируемых параметров,
  • регулирование и поддержание температуры и других физических величин в автоматических системах,
  • одновременное управление нагреванием и охлаждением,
  • модульное исполнение для сбора информации от нескольких датчиков температуры и управления несколькими устройствами.

В отдельных моделях могут быть реализованы дополнительные возможности применения для расширения функционала.

Преимущества применения температурных контроллеров с ПИД-регулятором

Пропорционально-интегрально-дифференцирующее регулирование, используемое термоконтроллерами, позволяет более точно управлять уровнем температуры и задавать необходимое значение уставки. Различные варианты исполнения ПИД-регуляторов температуры могут иметь дополнительные преимущества:

  • большой выбор подключаемых датчиков температуры,
  • низкая погрешность работы,
  • наличие индикатора для отображения результатов измерения, значения уставки и рабочих состояний,
  • удобное программное обеспечение для настройки и управления,
  • несколько режимов регулирования, включая возможность автоматического управления работой,
  • различные управляющие выходы,
  • возможность монтажа в шкаф управления и на DIN-рейку и многие другие.

Возможные недостатки работы температурного контроллера с ПИД-регулятором

При использовании пропорционального режима работы ПИД-регулятора термоконтроллера необходимо учитывать появление статистической ошибки, что влияет на стабилизацию значения температуры. Влияние статистической ошибки на работу снижается при использовании других режимов ПИД-регулирования.

Ограничением в использовании отдельных моделей контроллеров температуры с ПИД-регулированием может стать несовместимость с отдельными видами термодатчиков и отсутствие необходимых выходов для подключения оборудования. Это необходимо учитывать при подборе конкретной модели контроллера для работы в конкретных условиях.

Принцип работы термоконтроллеров с ПИД-регулятором

Температурный контроллер с ПИД-регулятором формирует сигнал обратной связи для исполнительного оборудования на основе информации, поступающей от подключенного датчика температуры. Сигнал управления складывается из трех величин: пропорциональной, интегрирующей и дифференцирующей, рассчитываемых на основании входного сигнала.

  1. Пропорциональная величина показывает отклонение текущей величины контролируемой температуры от заданного значения уставки. Чем больше отклонение, тем больше выходной сигнал.
  2. Интегральная величина определяет интеграл изменения отклонения значений по времени.
  3. Дифференцирующая величина показывает скорость изменения отклонения.

Работа ПИД-регулятора в зависимости от термоконтроллера может происходить в разных режимах:

  • ПИД-регулирование, при котором управляющий сигнал складывается из суммы всех трех величин,
  • ПИ-регулирование – сумма пропорциональной и интегрирующей величин,
  • ПД-регулирование – сумма пропорциональной и дифференцирующей величин,
  • П-регулирование, при котором для формирования выходного сигнала рассчитывается только пропорциональная величина.

Регулирование может осуществляться в ручном или автоматическом режимах, а также по заданной программе, если это предусмотрено контроллером.

В качестве исполнительного оборудования используются нагреватель и охладитель, либо устройства для подачи горячего теплоносителя или хладоагента. Многоканальные термконтроллеры могут осуществлять одновременное управление нагревательными и охлаждающими процессами по двум и более выходным каналам управления.

Что такое ПИД-регулятор

Особенности П, ПИ и ПИД регулирования

Особенности П, ПИ и ПИД регулирования

Что такое ПИД-регулятор

П регулирование. Выходная мощность прямопропорциональна ошибке регулирования. Чем больше коэффициент пропорциональности, тем меньше выходная мощность при одной и той же ошибке регулирования.

Пропорциональное регулирование можно рекомендовать для малоинерционных систем с большим коэффициентом передачи. Для настройки пропорционального регулятора следует сначала установить коэффициент пропорциональности максимальным, при этом выходная мощность регулятора уменьшится до нуля.

После стабилизации измеренного значения, следует установить заданное значение и постепенно уменьшать коэффициент пропорциональности, при этом ошибка регулирования будет уменьшаться.

Когда в системе возникнут периодические колебания, коэффициент пропорциональности следует увеличить так, чтобы ошибка регулирования была минимальной, а периодические колебания максимально уменьшились.  

ПИ регулирование. Выходная мощность равна сумме пропорциона- льной и интегральной составляющих. Чем больше коэффициент пропор- циональности, тем меньше выходная мощность при одной и той же ошибке регулирования, чем больше постоянная времени интегрирования, тем медленее накапливается интегральная составляющая.

ПИ регулирование обеспечивает нулевую ошибку регулирования и нечувствительно к помехам измерительного канала. Недостатком ПИ регулирования является медленная реакция на возмущающие воздействия. Для настройки ПИ регулятора следует сначала установить постоянную времени интегрирования равный нулю, а коэффициент пропорциональности — максимальным.

Затем как при настройке пропорционального регулятора, уменьшением коэффициента пропорциональности нужно добиться появления в системе незатухающих колебаний.

Близкое к оптимальному значение коэффициента пропорциональности будет в два раза больше того, при котором возникли колебания, а близкое к оптимальному значение постоянной времени интегрирования — на 20% меньше периода колебаний.

ПИД регулирование. Выходная мощность равна сумме трех состав- ляющих: пропорциональной, интегральной и дифференциальной.

Чем больше коэффициент пропорциональности, тем меньше выходная мощность при одной и той же ошибке регулирования, чем больше постоянная времени интегрирования, тем медленее накапливается интегральная составляющая, чем больше постоянная времени дифференцирования, тем сильнее реакция системы на возмущающее воздействие. ПИД-регулятор применяется в инерционных системах с относительно малым уровнем помех измерительного канала. Достоинством ПИД регулятора является быстрый выход на режим, точное удержание заданной температуры и быстрая реакция на возмущающие воздействия. Ручная настройка ПИД является крайне сложной, поэтому рекомендуется использовать функцию автонастройки.

 

Автонастройка ПИД регулирования в приборах ЧАО “ТЭРА”:

Главное, что определяет качество ПИД регулятора — это его способность точно и быстро выходить на заданную температуру, для чего у всех современных ПИД регуляторов обязательно присутствует функция автонастройки.

Стандартных алгоритмов автонастройки ПИД не существуют, на практике каждый производитель применяет свой собственный алгоритм.

Поэтому, пользователь, приобретая один и тот же товар под названием “ПИД регулятор” у разных производителей, на своем объекте может получить совсем разные результаты их применения. Основными достоинствами алгоритма автонастройки в ПИД регуляторах ЧАО “ТЭРА” являются:

  • автонастройка и выход на регулирование без перерегулирования (у стандартных ПИД регуляторов перерегулирование может достигать 50-70% от заданной температуры, что на некоторых объектах регулирования технологически нежелательно или вообще запрещено)
  • продолжительность автонастройки в среднем в 2 раза короче, чем у других производителей (крайне важная характеристика для объектов регулирования с часто изменяемыми свойствами, особенно для инерционных объектов)

Автонастройку можно производить при любом стабильном состоянии объекта регулирования. Кроме того, чем больше разность между начальной и заданной температурой, тем точнее определяются коэффициенты ПИД регулятора. Все коэффициенты ПИД хранятся в энергонезависимой памяти прибора.

Автонастройку необходимо повторить, если:

  • изменилась мощность исполнительного устройства
  • изменились физические свойства объекта регулирования (масса, емкость, теплообмен и т.п.)
  • объект регулирования заменен другим неидентичным
  • при значительном изменении заданной температуры

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock
detector